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1. Introduction

Vacuum processes (e.g., Rheinsahl–Heraeus (RH) process)
enhance metallurgical reactions that comprise a gaseous reaction
product (e.g., decarburization, removal of nitrogen or hydrogen).
In an RH plant, liquid steel is lifted up into the vacuum chamber

(VC) by two snorkels. In the up-leg snorkel,
argon is additionally introduced by a set of
nozzles to drive a global recirculating flow
pattern (Figure 1). During operation, steel
with high concentration of dissolved gases
is guided through the up-leg into the VC.
After passing the VC, refined steel flows
back to the ladle through the down-leg.
In addition, steel alloys can be introduced
into the VC, which subsequently homo-
genize in the steel ladle by the global steel
recirculation flow.

With many metallurgical processes, the
RH process is hardly accessible to detailed
measurements (due to the hot environ-
ment, opaque liquids, and thick walls). In
estimating the recirculation rate, research-
ers commonly rely on experiments of
global alloy dissolution or semianalytical
considerations. As a result, several empiri-
cal correlations for the recirculation rate
have been proposed.[1–4] Most of them
include the influence of the main geomet-
rical features of the plant as well as the gas

flow rate and in some cases the pressure inside the VC.
Recirculation models have also been combined with compart-
ment models, which differentiate between kinetic reaction mech-
anism in the VC and species mixing in the ladle.[5]

Other researchers pictured the RH process by cold water
models, studying main flow features, recirculation rate, and
species mixing.[6,7] They concluded that a dominant immerged
jet is formed in the ladle, just below the down-leg of the VC.
Such water models also serve as validation basis for numerical
simulations of different level of complexity. Geng et al.,[8] for
instance, considered 3D recirculation flow, neglecting surface
deformations in the VC. More recently, Ling et al.[9] applied a
free-surface volume of fluid (VoF) model in combination with
a discrete phase model (DPM) for the rising bubble plumes, thus
considering the most dominant multiphase flow features. For
modeling species mixing in the ladle, commonly unsteady
Reynolds-averaged Navier–Stokes (URANS) models have been
used.[10] From a fluid dynamical perspective, this raises concerns
because it is accepted in the literature that simple URANS
turbulence models such as the standard k�ε model are not able
to predict the flow of a submerged round jet, which obviously
represents a key feature of ladle flow.[11] Furthermore, visual
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Computational fluid dynamics (CFD) simulations of steel flow in an Rheinsahl–
Heraeus (RH) process are realized by a discrete phase model (DPM) for the
driving bubble plumes, a volume of fluid (VoF) method for the free surface in
the vacuum chamber (VC), and a large eddy simulations (LES) model for the
transport and mixing of steel alloys. CFD simulations are opposed to particle
image velocimetry (PIV) analyses of flow pattern at the bath surface in the VC.
While simple Reynolds averaged turbulence models fail to reproduce these plant
observations, LES agrees fairly well. Furthermore, the steel recirculation rate is
compared with empirical correlations from the literature, yielding good agree-
ment with respect to the dependency of the recirculation rate on the gas injection
rate. The absolute value of the recirculation rate increases by 15%, in case
(realistic) eroded edges are considered instead of a (unrealistic) sharp-edged
geometry. Data-assisted recurrence CFD (rCFD) is applied to accelerate con-
ventional CFD. The rCFD simulations yield a computational speed-up of four
orders of magnitude, enabling real-time LES at full grid resolution of three million
cells. Titanium homogenization in the steel ladle is addressed by means of rCFD
and compared with corresponding plant trials yielding good agreement.
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observation of bath surface flow in the VC exhibits a dominantly
unsteady flow behavior, which might be prohibitive even for the
application of anisotropic URANS turbulence models.

More detailed scale-resolving turbulence models such as the
large eddy simulation (LES) method, in turn, require high
spatial and temporal resolution which result in excess simula-
tion times, especially in case of long-term processes (such
as steel alloy homogenization). In this article, we therefore
use recurrence computational fluid dynamics (rCFD) which
is a data-assisted methodology for bridging well-separated time
scales of fast flow dynamics and comparably slow process
dynamics.[12,13]

Generally, rCFD resembles a twofold simulation approach.
In the first part, conventional simulation techniques are used
to establish a database of characteristic flow patterns, whereas
in the second part, rCFD uses this data to efficiently model pas-
sive transport processes.

Over the past years, two main classes of rCFD have been
developed. In a first flow-based version of rCFD, snap shots
of Eulerian flow fields are stored into the database. Subsequently,
sequences of those snapshots are stitched together by a recur-
rence process, yielding an artificial flow which runs beyond the
time span covered by the database. On top of this artificial flow,
long-term passive transport is represented by conventional trans-
port equations. Typically, this flow-based rCFD methodology

results in a computational speed-up of two orders of magnitude
if compared with full CFD simulations.[12,14]

In a second transport-based version of rCFD, snap shots
of Lagrangian cell-to-cell communication patterns are stored
instead of flow fields. In this case, applying a recurrence process
yields a time-varying cell-to-cell communication network,
which operates on the computation grid. Based on these
communication patterns, passive transport is modeled by con-
vective cell-to-cell shifts of information together with diffusive
face swaps of information. In previous studies,[15,16] we showed
that this version of rCFD is extremely performant, resulting in a
computational speed-up of up to four orders of magnitude,
which, in many cases, enables real-time simulation of passive
transport on high-resolution grids. The overall workflow of recur-
rence CFD (rCFD) simulations is shown in Figure 2.

Although rCFD is still in development, different versions of
rCFD have already been applied successfully to turbulent single-
phase flow,[15–18] bubble columns,[12] and fluidized beds.[14,19–21]

In the first part of this article, we present conventional CFD
simulations of steel recirculation flow in an RH plant. By oppos-
ing our numerical results to real-plant observations of flow fields
in the VC, we compare the predictive capabilities of simple RANS
models to those of LES turbulence models. We further relate our
CFD predictions of global steel recirculation rate (i.e., the mass
flux of steel into the VC) to empirical correlations from the
literature. In the second part of this article, we proceed with
transport-based rCFD simulations of titanium homogenization.
Finally, we compare those real-time predictions with plant trials
of ferrotitanium addition.

Overall, this article aims to answer two main questions:
1) Can we reliably model the steel recirculation flow in an
RH plant? 2) How can we reduce both the expenditures and
the costs of such simulations?

2. Modeling: Conventional CFD Simulations

In our previous study, we investigated the dynamic interaction of
bubble plumes with a free bath surface by considering sloshing
in a spring mounted vessel.[22] In that study, we experienced
excellent agreement between experiments and numerical

Figure 1. Sketch of a 170 tons RH steel degassing plant; the red line
indicates the curve radius used for the rounded edge geometry.

Figure 2. Overall workflow for rCFD simulations. Once conventional CFD
simulations show pseudoperiodic flow (i.e., after the initial spin-up
process of the flow), characteristic flow pattern are collected into a data-
base in a second step. Finally, rCFD uses these data to simulate titanium
transport and homogenization, whereas conventional CFD simulations
require large computational times, rCFD actually runs faster than the
real-world process itself.

www.advancedsciencenews.com
l

www.steel-research.de

steel research int. 2020, 91, 2000214 2000214 (2 of 9) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.steel-research.de


simulations, combining 1) a VoF model for the bath surface with
2) a DPM for the bubble plumes and 3) a LES model for the
turbulence. In this article, we follow the same modeling strategy
because the RH process comprises similar flow phenomena of
interest. Because modeling details are already given in our
previous study,[22] we just outline this modeling concept within
the next subsections for the sake of completeness.

2.1. Governing Flow Equations

To resolve the free surface motion in the VC, the VoF model is
used, which is based on a transport equation for the phase
volume fraction αq,

∂αqρq
∂t

þ ∇ ⋅ ðαqρquÞ ¼ 0 (1)

with the phase volume fractions, αq, summing up to one,
P

qαq ¼
αl þ αg ¼ 1. Indices l and g refer to the liquid and the gas phase,
whereas the index q represents a general phase with density ρq.
The mixture velocity u is subject to a momentum equation

∂ðρuÞ
∂t

þ ∇ ⋅ ðρuuÞ ¼ �∇pþ ∇ ⋅ τþ ρgþ Kb!l (2)

with the phase averaged density ρ ¼ P
qαqρq, pressure p, the

stress tensor τ, the vector of gravitation g, and the driving force of
the bubble plumes Kb!l. The shear rate tensor further follows to

τ ¼ μt;sgð∇uþ ∇uT Þ (3)

where μt;sg denotes either the turbulent viscosity or the subgrid
viscosity.

In case of the standard k–ε turbulence model, we insert

μt ¼ Cμρ
k2

ε
(4)

where k and ε are the specific turbulent kinetic energy and
the specific dissipation rate, respectively, and Cμ ¼ 0.9 is model
constant.

In case of standard Smagorinsky LES, the subgrid viscosity
reads

μsg ¼ 2ðCsΔgrÞ2γ̇ (5)

where Δgr denotes the local grid spacing, γ̇ the local shear rate
(i.e., the second invariant of the shear rate tensor), and Cs ¼ 0.1
is a model constant.

2.2. DPM

In the up-leg of the RH plant, our model should be able to repre-
sent highly turbulent bubble plumes with significantly varying
bubble volume fractions. In accordance with our previous study,[22]

we chose a combination of the drag models of Ishii and
Zuber and Schiller and Naumann in combination with a swarm
adaption. In this model, the overall drag coefficient CD reads

CD ¼ βCD;Ishii þ ð1� βÞCD;Schiller (6)

where β represents a coupling parameter which depends on
the local liquid volume fraction (further details are given by
Pirker et al.[22]).

Based on this efficient drag coefficient, the volumetric
interaction force between the dispersed bubble phase and the
continuous liquid phase reads

Kb!l ¼ CD ρ
αlαb
L

ju� ubjðu� ubÞ (7)

where indices b and l indicate bubbles and liquid phase,
respectively.

Discrete parcels of bubbles are introduced at the submerged
nozzles with an initial velocity of un ¼ 100m s�1, a constant
bubble diameter of db ¼ 10mm. We adjusted the bubble per
parcel loading Nb=p ¼ Q̇nozzleΔtsim=5Vb such that within each
simulation time-step five parcels of bubbles are introduced
per nozzle (with Q̇nozzle being the volumetric flow rate of each
nozzle and Vb describing the bubble volume). Once bubbles
reach the bath surface, they are deleted.

2.3. Species Transport

On top of this multiphase flow simulation, we consider the trans-
port of dissolved steel alloys by a passive transport equation for
the alloy concentration c,

∂ðρlαlcÞ
∂t

þ ∇ ⋅ ðρlαl c uÞ ¼ ∇ ⋅ ρlαlΓ∇cþ Sc (8)

where Γ is the diffusion coefficient and Sc represents local sour-
ces due to alloy addition. In this study, we neglect the process of
alloy dissolution, assuming that dissolution happens nearly
immediately.

2.4. Numerical Settings

We discretized the computational domain including steel ladle,
VC, and free board (as shown in Figure 1) by 3.2M purely hex-
ahedral grid cells.

Conventional CFD simulations were performed with the
commercial software ANSYS Fluent.[23] Hereby, we adapted
the standard DPM by user-defined functions (UDFs) for the
swarm drag law. We further applied a user-defined scalar trans-
port equation to picture the transport of dissolved steel alloys.

After spinning up the flow for 60 s, we started with the evalu-
ation of steel recirculation rate, averaging for another 30 s. Due to
the highly dynamic flow pattern, very small time steps in the
order of Δt ¼ 10�2 s had to be applied, resulting in an overall
simulation time for this 1.5 min process time of approximately
75 h on 24 Advanced Micro Devices (AMD) cores.

3. Results: Conventional CFD Simulations

3.1. Unsteadiness and Secondary Flows

In the vacuum treatment plant of voestalpine Linz, a video
camera is installed in the VC, which enables a visual observation
of a restricted portion of the bath surface (Figure 3b,c). During
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operation, this video coverage reveals highly unsteady brightness
patterns at the bath surface, which manifest in visually distin-
guishable moving dark stripes at the overall bright bath surface.
We associate the movement of those stripes to the velocity of the
actual steel surface. Based on this assumption, we deduce quan-
titative velocity fields of the bath surface by particle image veloc-
imetry (PIV). State of the art correlation algorithms for PIV are
very robust and can provide a good estimation of velocity vectors
even if the common rules of thumb for flow tracers cannot be
fulfilled (in our case, the only “tracers” available are the surface
stripes and speckles mentioned previously). The presented PIV
vector fields are indeed an extreme case of applying PIV cross-
correlation techniques and the accuracy of the obtained results
cannot be calculated precisely as a calibration beyond the geom-
etry of the VC is not possible. However, Figure 3 shows that it is
in fact possible to obtain instantaneous vector fields from video
recordings in such harsh environments.

In Figure 3d, three bath surface velocity patterns are exempli-
fied. Obviously, the movement of the bath surface in the VC is
dominantly unsteady, exhibiting very irregular flow pattern of
significant velocity magnitude of up to 1.8m s�1.

In addition to plant observations, we performed numerical
simulations of the steel flow.

Numerical predictions of steel velocity at a horizontal surface
close to the bath surface in the VC are shown in Figure 4.

Obviously, a conventional CFD simulation based on standard
URANS turbulence modeling predicts a very regular flow pat-
tern. This flow prediction is characterized by two wall jets, which
emit from the up-leg and flow toward the down-leg in a symmet-
ric fashion. In contrast to that, LES turbulence modeling predicts
a highly irregular flow pattern as shown in Figure 4b.

By just qualitative comparison with the on-plant measure-
ments, we conclude that an LES-based CFD simulation captures
the physical behavior of the steel flow in the VC better than a
comparable URANS-based model using the same grid size (of
more than 3.2M cells) and time-step width (10ms).

Actually, this topological difference in the predicted flow pat-
terns in the VC has significant consequences for the flow in the
down snorkel and subsequently the global flow in the steel ladle.
As shown in Figure 5a,b, the LES model predicts significant flow
rotation (of alternating spin direction) in the down-leg, whereas
the URANS model shows nearly no secondary flow at all. In the
steel ladle, the URANS simulation pictures a straight downward
jet with all momentum aligned to the jet direction, whereas in
case of LES, a rotating jet enters the steel ladle. In comparison
with URANS, this jet rotation (of LES) leads to enhanced jet
dispersion and consequently less jet penetration.

At this point, we conclude that there are significant differences
in the global flow topologies as predicted by URANS simulations
and LES, respectively. Furthermore, by comparison with plant

Figure 3. Plant observations at voestalpine Linz: a) photo of VC showing plant erosion patterns after several treatments; b) video snap-shot of VC directly
after treatment; c) video snap-shot of VC bath flow showing luminosity patterns; d) PIV evaluations of these luminosity patterns at three instances of time
(evaluated during removal of hydrogen operation).
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observation, we suggest that LES are more likely to represent the
physics of the steel flow than URANS-based simulations.

3.2. Global Steel Recirculation

In a next step, we therefore proceed with a set of LES simulations
of steel recirculation for the evaluation of the average recircula-
tion rate in dependence of the purging gas injection rate. In
Figure 6, simulation results are depicted by the symbols, with
closed symbols indicating mean values (averaged over 30 s)
and the triangles indicating minimum and maximum values.
In this representation, both—gas purging rate and steel recircu-
lation rate—are normalized by the values of a reference case for
which absolute values are shown in Table 1. In addition to the
simulation results, additional lines highlight the main

dependencies given by three empirical correlations. In this case,
our LES simulation results agree very well with the predictions of
Wei and Yu.[2]

Considering the absolute values shown in Table 1, our numer-
ical simulations predict a smaller mean steel recirculation rate
than suggested by the empirical correlation of Wei and Yu.[2]

At this point, it might be worth looking at the actual real-plant
geometry. Figure 3a shows a typical erosion pattern inside a VC
after several treatments. Obviously, the initially sharp edges at
the entry of the down-leg have been eroded to a rounded shape
(plant operators report that this rounding happens at an early
stage of operation, meaning that sharp edges just do not survive
even few treatments). In contrast, if we consider a rounded
down-leg entry (with a curve radius of 200mm), LES predicts
an increase in mean steel recirculation rate by 15%, which then

Figure 4. Steel velocity as result of conventional CFD simulations in a horizontal plane close to the bath surface in the VC: a) RANS and b) LES-based
turbulence modeling; color indicates y-velocity (perpendicular to the plane spanned by the two snorkels) and arrows indicate instantaneous direction of
velocity (only every 10th vector is plotted).

(a) (b)

Figure 5. Steel velocity as result of conventional CFD simulations in a vertical plant: a) URANS and b) LES-based turbulence modeling; in contrast to
URANS, LES predicts a dominant downward jet with significant secondary rotation; see Figure 4 for color coding.
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slightly overestimates the prediction of Wei and Yu. Although
both—LES and plant observation—suggest that the erosion
pattern in the VC has a significant effect on the steel recirculation
rate, none of the considered empirical correlations takes it
into account.

At this point, we conclude that CFD simulations based on LES
turbulence modeling has the potential to reproduce the flow
behavior in alignment with plant observation and available
empirical correlations. At the same time, we conclude that
these LES are very expensive by means of computational costs
requiring days of simulation time for just 1 min of process time
(i.e., 50 h computation time for 1min process time on 24 AMD
cores). In the second part of this article, we therefore aim to
reduce the computational costs of LES-based CFD simulations
by means of data-assisted rCFD.

4. Modeling: rCFD Simulation

The main concept of transport-based rCFD has been published
in Pirker and Lichtenegger (in that publication, even algorithmic
flow sheets are provided).[15] Further details with regard to the
modeling of physical diffusion are given in the literature.[18,19]

At this place, we therefore just present the main modeling
features and abstain from a detailed description of the rCFD
methodology.

4.1. Recurrence Database

In a first step, conventional CFD simulations of pseudoperiodic
steel flow (i.e., after recirculation spin-up) feed a database of cell-
to-cell communication. For this purpose, buoyant-neutral fluid
tracers are seeded throughout the computational domain.
During one monitoring time step, these fluid tracers are tracked
and their start and end cell IDs are stored into the database.
After one monitoring time step, these pairs of cell IDs are stored
into one frame of the database together with a weighting scalar,
representing the steel volume fraction of the start cell at the
beginning of the monitoring step. After one monitoring time
step (which in our case is 10 times larger than the time-step
of the CFD simulation), another set of fluid tracer is seeded
and the process of cell-to-cell communication monitoring starts
again. In our case, we filled the database with 100 frames of
consecutive cell-to-cell communication patterns covering a total
monitoring duration of 10 s.

4.2. Recurrence Process

In a second step, we use a recurrence process, to extrapolate this
recurrence database into a continuing thread of time-varying
cell-to-cell communication patterns. To start with, we replay an
arbitrary sequence of communication pattern, from frame i to
frame j > i, with random number of frames in between i and j.
When the replaying sequence reaches end frame j, we look
for a similar frame to serve as start frame for the next replaying
sequence. To evaluate the degree of similarity between two
frames, we exploit a global recurrence norm, which, in our case,
sums up local differences in velocities above a threshold velocity
of jujmin ¼ 0.5m s�1 (by applying this threshold velocity, we
focus on only the most dominant flow features). If we plot a
recurrence matrix of pairwise global recurrence norms (with
frame numbers spanning the two indices, see Figure 7), similar
frames manifest as local minima in the off-diagonal region of
the matrix. After we have chosen a new start frame, we replay a
second sequence of communication pattern and so forth.

4.3. Propagation of Information

In a third step, this continuing thread of cell-to-cell communica-
tion patterns is used to propagate information of a passive scalar
quantity. At its core, one propagation steps consists of two main
operations, cell-shifts and face-swaps.

During cell-shifts, passive information, which is stored at indi-
vidual cells of the computational grid, is shifted to other cells by
means of the cell-to-cell communication pattern of the current
frame of the recurrence process. Intuitively, one can associate
this cell-shift operation to physical convection. To get smooth
and complete field information after cell-shifts, averaging (in
case several cells are hit) and hole-filling (in case individual cells
have not been hit) have to be applied.

Face-swaps, in turn, operate just on neighboring cells such
that a portion of information is shifted from the higher-value cell
to the lower-value cell. Obviously, this operation is intended to
address physical diffusion. Finally, another set of mass-acting
face-swaps is used to control the global species balance

Figure 6. Normalized steel recirculation rate as a function of argon purg-
ing rate; symbols indicate results of conventional LES-based CFD simula-
tions (mean, min, and max values), whereas lines show correlations from
(solid line) Wei and Yu,[2] (dashed line) Ono et al.,[3] and (dashed–dotted
line) Kuwabara et al.[1]

Table 1. Mean steel recirculation rate at a reference gas injection rate of
Q̇gas ¼ 86Nm3 h�1 as result of conventional LES-based CFD simulations
(with sharp and round down-leg entry) and three empirical correlations;
results are given in kg s�1.

CFD sharp CFD round Ono et al.[3] Kuwabara et al.[1] Wei and Yu[2]

1030 1184 1092 1205 1150
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(in Pirker and Lichtenegger,[15] this is labeled “global balance
safety belt”).

Altogether, this way of information propagation on a time-
varying communication network represents an extremely simple
and performant way of modeling passive transport in the context
of CFD.

4.4. Numerical Implementation

All functionalities of rCFD (i.e., the establishment of the recur-
rence database, the recurrence process, and the propagation
steps) have been implemented in ANSYS/Fluent[23] by means
of UDFs using message passing interface parallelization. It
should be noted that once the database has been established,
no solver functionality of ANSYS/Fluent is needed anymore
and rCFD acts as a stand-alone software, linked to the UDFs.

5. Results: rCFD Simulations

Figure 7 shows the recurrence matrix for the steel flow inside the
RH plant, depicting the pairwise difference of individual frames
of the database. Obviously, this matrix has a zero diagonal, mean-
ing that individual frames do not differ at all, if compared with
themselves. In the off-diagonal region, however, regular patterns
can be seen with lower (bluish) values hinting to frame pairings
with significant similarity (which subsequently can be used in
the recurrence process).

A closer inspection of this pronounced pseudoperiodic behav-
ior reveals that our conventional CFD predicts regular bubble
plume eruptions in the up-leg of the RH plant. In other words,
the driving gas pump seems to work in slugging mode.[24] While
this pronounced regularity might be attributed to numerical

reasons such as the choice of constant bubble diameter, regular
eruption of the bubble plumes above the up-leg are also visible by
the video coverage of the real plant. By just visual observation, we
could estimate the real-plant eruption frequency to be in the
order of f plant ¼ 1Hz, whereas our conventional CFD predicts
a lower frequency of about f CFD ¼ 0.5Hz.

To study the addition and transport of titanium, we just mark a
specific spherical subregion of the bath in the VC with a corre-
sponding initial concentration of already dissolved titanium.
After this simplified initialization, information on titanium con-
centration is propagated on the computational grid by means of
rCFD simulations.

In Figure 8, the instantaneous concentration of titanium is
given in a vertical and three horizontal observation planes for
three instances of time t ¼ 5, 20, 60 s. Due to the highly turbulent
motion of the bath, titanium is dispersed in the VC nearly imme-
diately. Already after 5 s, titanium seems to be homogenized in
the VC, whereas a first jet of titanium is entering the ladle.
The next set of concentration plots at t ¼ 20 s exhibits the flow
topology inside the ladle, picturing the downward jet together
with the upward steel flow at the ladle walls. Finally, the concen-
tration plots at t ¼ 60 s indicate that homogenization in the ladle
is nearly completed except for some stagnant zones on the top
of the ladle, which are hardly affected by the global steel
recirculation.

Based on these high-resolution field data, histograms of tita-
nium concentration are deduced in Figure 9. Such time-varying

Figure 7. Recurrence matrix showing the normalized recurrence norm for
100 frames in the database; color indicates the degree of pairwise simi-
larity ranging from zero (equal frames) to red (maximal distance between
two frames).

Figure 8. Titanium concentration in the steel as result of rCFD simulations
in four observation planes at three instances of time at t ¼ 5, 20, 60 s
(top to bottom); concentration values are given in logarithmic scale.
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histograms can be used to evaluate the global progress of steel
alloy homogenization.

While a direct comparison between conventional CFD and
rCFD has already been presented by Pirker and Lichtenegger,[15]

we here oppose rCFD predictions to corresponding plant data.
In Figure 10, dashed lines represent rCFD predictions of the
time-varying titanium concentration at the real-plant probe posi-
tion (in a mid-plane between the snorkels with an immersion
depth of approximately 500mm) and its symmetric counterpart
position. While both, the geometry and the titanium initializa-
tion, are truly symmetric, the resulting flow exhibits large-scale
asymmetric flow features, which leads to different concentra-
tions at these positions (indicated by the two dashed lines). In
addition to the concentration at the probe positions, the predicted
mean concentration (i.e., the total mass of titanium divided by
the total mass of steel) in the ladle is given by the solid line.

In general, rCFD predictions agree with corresponding real-plant
concentration measurements (given by symbols) fairly well.
The slight over estimation of titanium homogenization time
might be related to our simplified assumption of immediate
dissolution of the added ferrotitanium.

Both plant probes and rCFD simulations indicate that steel
alloy homogenization is achieved after about 1min. At an inter-
mediate time of t ¼ 30 s, we observe a significant scattering of
concentration values (for both measurements and simulations).
In this phase of homogenization, the actual concentration values
at a given probe position strongly depend on the instantaneous
flow pattern and one generally cannot deduce information on the
global mean concentration from just these point values. In
contrast to just point values, rCFD can provide more reliable
(less scattered) field information of titanium concentration to
estimate the global mean concentration.

Overall, we experienced that rCFD dramatically improves the
computational efficiency. In agreement with previous studies, we
experienced a computational speed-up of about four orders of
magnitude (i.e., rCFD is 10 000 times faster than conventional
CFD). In our case, rCFD was even faster than the corresponding
real-world process itself.

We conclude that rCFD can be used for accelerating conven-
tional CFD simulations. Even if rCFD does not add any physics
on top of conventional CFD, its fast (real-time) prediction
capability might provide new insights for long-term processes.
In future, rCFD might also serve as an online prediction
tool for high-resolution flow in the context of virtual plant
shadows.

6. Conclusion

In this study, we reported on numerical simulations of steel
recirculation flow in an RH vacuum treatment plant. Our main
findings of conventional CFD simulations are as follows:

The proposed modeling framework (i.e., the combination
between a DPM for the bubble plumes and a VoF model for

Figure 9. Histograms of titanium concentration in the steel ladle as result of rCFD simulations for five instances of time.

Figure 10. Time evolution of normalized titanium concentration as result
of rCFD simulations (lines) and plant trials (symbols); mean values (solid
line) and probe values (dashed lines and symbols).
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the free surface in the VC) works numerically stable and
produces reasonable results.

While LES turbulence model predicts bath surface motion in
the VC in alignment with PIV analysis of on-plant observations, a
URANS standard k� ε model fails to predict those real-plant
flow patterns.

LES predicts a different global recirculation topology than
corresponding RANS k� ε simulations. While LES predicts a
rotating downward jet emerging into the steel ladle, RANS
k� ε does not show secondary flows. This, in turn, results in
different prediction of jet dispersion pattern.

LES predicts the same functional dependency of argon injec-
tion rate on steel recirculation rate as proposed by the empirical
correlation of Wei and Yu.[2]

A rounded geometry results in higher recirculation rates.
Assuming a curve radius of 200mm at the entry of the down-
leg increases the recirculation rate by 15%. In real plants, such
roundings inevitably establish after only few treatments.

While LES based on a sharp-edged geometry underestimate
steel recirculation if compared with available empirical correla-
tions, an LES based on a rounded geometry leads to good
agreement.

In a second part of this article, we applied rCFD to study the
transport and homogenization of steel alloy. Our main findings
of this part are as follows:

A recurrence analysis of conventional CFD reveals a nearly
periodic flow field in the up-leg of the RH plant, suggesting that
the gas lift operates in slugging mode. Also, in the real plant,
reoccurring eruptions above the up-leg can be observed—
however with higher frequency and less regularly.

The transformation of conventional CFD into a data-assisted
rCFD works numerically stable and produces reasonable results.

By means of rCFD, we can picture the process of dissolved
titanium transport and homogenization, yielding a plausible
evolution of high-resolution field information of titanium con-
centration in the VC and the steel ladle.

The predictions of rCFD simulations are in good agreement
with corresponding plant trials of titanium homogenization.

In our case, rCFD was 10 000 times faster than conventional
CFD. Although we run rCFD on a grid of 3.2M cells, we could
yield time-varying, high-resolution field data of titanium concen-
tration faster than in real-time.
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