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1. Introduction

The study of moving bed reactors in general and blast furnaces
(BFs) in particular has attracted a large number of researchers
from various disciplines. In addition to their undisputable rele-
vance for worldwide steel production and related industries,
these systems constitute a substantial challenge for scientists
interested in numerical simulations of granular matter and
particle–fluid interactions. The extreme variety of length and

time scales has prevented a detailed,
fully resolved description of real-scale
BFs so far, because the huge number of
coke and ore grains exceeds the capabilities
of current computational methods by
orders of magnitude. Similarly, the contact
mechanics of stiff materials[1] requires
very small time steps, whereas relevant pro-
cess durations encompass several hours
(or even more), which is such a massive
scale separation that it goes far beyond
current computational resources. These
discouraging obstacles are countered by
the significant benefits of carrying out
numerical in addition to on-plant experi-
ments: The former are much safer,
cheaper, and more flexible, and they pro-
vide much more information which might
be inaccessible from the latter (e.g., on the
conditions in the center of the BF hearth).

Due to the limited computational
resources, first attempts to simulate mov-
ing bed reactors used a fully Eulerian
approach, i.e., the granular material was

described with continuous fields for velocity and packing fraction
just as the interstitial gas. Subsequently, this approach was
extended with other phases such as liquid iron and slag or dust[2]

and more physics such as heat and mass transfer or thermo-
chemical reactions.[3–6]

Although numerically not too expensive, such Eulerian meth-
ods generally suffer from the lack of particle-based representa-
tion. As the contact mechanics of densely packed, solid grains
is very complicated, a description in terms of field quantities
such as the local amount of particle mass and momentum is con-
nected to a significant uncertainty in the resulting meso- and
macroscopic flow patterns, which also affects transport of heat
and hence the gas dynamics. Furthermore, a description based
on discrete particles allows for a straightforward study of sophis-
ticated inner-grain processes such as chemical conversion of
hematite to magnetite, wüstite, and finally to iron.[7]

The discrete element method (DEM) introduced by Cundall
and Strack[8] combined with computational fluid dynamics
(CFD–DEM)[9,10] constitutes the method of choice to simulate
dense particulate flows. It tracks each grain, calculates the forces
from the surrounding particles and fluid phase, and hence
obtains relatively accurate trajectories. However, high numerical
costs limit this approach usually to O(106) elements. Even though
combining several particles into one parcel with modified mate-
rial properties[11,12] (e.g., shear modulus or coefficient of friction)
allows to carry out larger-scale simulations, most investigations
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Detailed particle-fluid simulations of moving bed reactors such as blast furnaces
(BFs) are computationally very expensive. The wide range of temporal scales from
short-lived micromechanics to slow, macroscopic transport makes it almost
impossible to study e.g., heat transfer over process-relevant time scales.
However, a recently introduced approach that uses high-fidelity data obtained
with the discrete element method (DEM) enables extremely fast data-assisted
simulations. Using this methodology, calculations are conducted, which are
efficient enough to study granular motion through a BF slot model subject to heat
transfer between the hot blast and the solid phase over many hours. These long
durations make it possible to determine the thermal steady state including shape
and location of the cohesive zone (CZ). While other approaches either have to
predefine its properties or are bound to very small domain sizes, this novel
strategy is applied to a large-scale BF slot model with about 28 m height and 15 m
width with hardly any prior knowledge. It constitutes an important step toward
virtual experiments on BFs under realistic conditions and will allow researchers to
gain new insights, perform variations of operating parameters, and ultimately
build an online monitoring system.
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of packed beds in general and BFs in particular with CFD–DEM
have focused on specific phenomena. Although material charg-
ing,[13] burden descent,[14–16] raceway formation,[17–21] heat trans-
fer from a hot gas to the granular phase[22] or within it,[23,24]

reduction of iron ore[7] or the dynamics of liquid iron and slag
through/around the deadman in the hearth[25] have already been
investigated separately, a combined, accurate model applicable to
a BF including several[26] or all of these processes is extremely
difficult to create. In addition to practical challenges such as
unavailability of various in-house codes or the lack of appropriate
interfaces to couple them, the mentioned phenomena take place
over time scales which are all far beyond the scope of DEM if
applied to such large reactor sizes that, e.g., both charging at
the top and liquid tapping close to the bottom can be considered.
Unless slow subprocesses are artificially sped up, e.g., with a scal-
ing approach,[27] a massive spread of temporal scales remains to
be closed.

Over the last decade, first attempts to tackle this problem
using data-assisted approaches with precalculated aspects of
the granular dynamics were made. Although similar ideas are
well-known in the CFD community (e.g., flamelet libraries[28]),
only a few authors have applied them to dense, particulate flows
with their complicated contact mechanics so far. Bluhm-
Drenhaus et al.[29] and Krause et al.[30,31] described a two-stage
technique where they first obtained particle positions and veloci-
ties from pure DEM and then used the resulting trajectories for
coupled CFD simulations including heat and mass transfer of
lime shaft kilns over several hours. Arguing along similar lines,
Bednarek et al.[32] time-extrapolated grain paths to study mixing
of different grain species over long durations at little computa-
tional costs. In contrast to such Lagrangian, position-based meth-
ods, Vångö et al.[33] used a database of particle volume fraction
fields corresponding to different liquid levels in a BF hearth from
CFD–DEM to accelerate subsequent simulations of the drainage
process. Instead of calculating the position of the deadman from
the dynamics of each single grain depending on the remaining
liquid iron and slag, they looked it up in the database so that they
only had to solve the fluid problem. Similarly, Lichtenegger[34]

used short-term CFD–DEM simulations to obtain the granular
velocity and volume fraction fields and replaced solid particles
with noninteracting tracers in the next step. These simply fol-
lowed the prescribed field lines while the gas dynamics was cal-
culated according to the current bed conditions such as location
of coke and ore layers or the local temperature. In contrast to the
Lagrangian methods of Bluhm-Drenhaus et al.,[29] Krause
et al.,[30,31] and Bednarek et al.,[32] which provide more details
on the single-particle level, this approach is simpler concerning
information requirements because only one field for velocity and
one for packing density needs to be obtained and stored. Hence,
it could easily be embedded into the more general framework of
Eulerian recurrence CFD[35] and can in principle handle both
pseudo-steady and recurrent dynamics because it allows for very
efficient combination, extrapolation and/or updates of flow infor-
mation. As a matter of fact, the pseudo-steady problem of
Lichtenegger[34] can be regarded as a special case of recurrent
motion for which the method has been used repeatedly.
However, the dense packing of granular beds and the strong ther-
mal gradients in BFs required specific handling.

Compared to CFD–DEM, this approach was so fast that the tem-
perature evolution in a BF could be studied over the course of 24 h
process time, which was sufficient to reach the thermal steady state
starting from a cold, initial guess. As all information about the
granular dynamics was retrieved from a short-term CFD–DEM
simulation, gradual changes in the trajectories over long durations
could not be captured. Consequently, the shape of the raceways or
the location of the cohesive zone (CZ) had to be predefined and did
not change during the long-term, data-assisted simulation.
Although the former can be obtained from a CFD–DEM calcula-
tion, the latter is determined by the temperature distribution which
can only be found from a long-term study. However, it is well
known that the position of the CZ has a significant influence
on the resulting flow patterns.[16] In this work, we combine fast,
data-assisted simulations to achieve a thermal steady state with
intermittent CFD–DEM simulations to update the location of
the CZ and its influence on the particle flow fields. This way,
we can include gradual changes in the particle dynamics due to
shifting of the softening and melting zones. Finally, we find
the thermal steady state with its corresponding CZ.

2. Methodology

2.1. Equations of Motion of Particulate Flows

2.1.1. Particle Equations

Solid particles are characterized by their position, velocity (both
translational and rotational), mass, size, and any inner properties
such as temperature or chemical composition. Their trajectories
can be obtained from Newton’s second law

ṙ i ¼ vi (1)

miv̇i ¼ Fðp�pÞ
i þ Fðp�f Þ

i þ FðextÞ
i (2)

where Fðp�pÞ
i is the particle–particle interaction mainly due to

contacts, Fðp�f Þ
i represents the forcing due to the surrounding

fluid and FðextÞ
i comprises forces of external origin such as

gravity. The particle–particle interaction is often approximated
as a pairwise sum

Fðp�pÞ
i ¼

X
j 6¼i

�
FðnÞ
i,j þ FðtÞ

i,j

�
(3)

of spring–dashpot models for spherical grains, that depend on
the normal and tangential overlap of particles in contact.[1,8]

In many cases, the most important contributions to the particle–
fluid interaction are pressure gradients and the drag force,
i.e., the resistance to relative velocity between solid and fluid
phase (see Section 2.1.2). In addition to Equation (1) and (2), their
counterparts for angular orientation and velocity need to be
solved, but are not explicitly spelled out here.

For large-scale simulations, it has become common practice to
replace n3 particles of diameter d with a single parcel with diam-
eter nd, which is referred to as coarse-graining. Such a procedure
implies an adaption of DEMmaterial parameters either based on
closure rules[11,12] or on small-scale calibration simulations of
e.g., the angle of repose. For the particle–fluid interaction, one
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has to keep in mind that each parcel represents several actual
grains, hence it needs to be evaluated in terms of d and finally
scaled with n3. Clearly, this approach is increasingly challenged
with growing parcel size and breaks down once it gets close to the
geometric dimensions of a problem.

Similar as momentum in Equation (2), the temperature of a
grain with massmi and specific heat capacity Cp not only changes
to due heat exchange with surrounding particles and fluid but
also due to inner sinks or sources, e.g., because of chemical reac-
tions, viz

miCpṪ i ¼ Q̇ ðp�f ÞðTi � T f ðr iÞÞ þ
X
i6¼j

Q̇ ðp�p;condÞðTi � TjÞ

þ
X
i 6¼j

Q̇ ðp�p;radÞðT4
i � T4

j Þ þ Q̇ ðchemÞ (4)

Among the various correlations available for particle–fluid
heat transfer, we used that of Ranz and Marshall.[36] Note that
in BFs and similar reactors, the convective heat transfer coeffi-
cient is often massively overestimated and needs to be scaled
down, which might be caused by flow irregularities and channel
formation[37] but is currently an open question. For the present
work, we reduced it by a factor of 10.

The interparticle exchange of heat due to conduction, in con-
trast, can be calculated in a relatively straightforward fashion
because it mainly depends of the contact area which is directly
accessible in a DEM simulation from the particle positions and
sizes. Although it is well-known that radiative heat transfer plays
a dominant role at high temperatures, we did not include it in the
present article to keep the current considerations as simple as
possible. Nevertheless, we point out that approximate models
for this computationally rather complex transfer mechanism
exist, which are applicable for large-scale investigations.[24,31]

Temperature can clearly affect other particle properties, espe-
cially close to the melting point. Concerning the focus of this
work, we want to study the gradual softening and finally melting
of ore grains on their way through the CZ. To this end, we
assume that a particle starts shrinking if its temperature is above
a certain lower threshold T soft. At the same time, its mass needs
to be conserved so that we introduce a pseudo-volume factor feff
such that

4π
3
r3ρfeff ¼ m (5)

As monodisperse spheres have a maximum random packing
fraction of about αmax ¼ 0.64,[38] the pseudo-volume factor is lim-
ited by 1 ≤ feff ≤ 1=αmax, where the upper bound corresponds to
complete deformation so that the whole available volume can be
occupied. Hence, we suggest

feff ¼ 1þ T � T soft

Tmelt � T soft

�
1

αmax
� 1

�
(6)

if T soft < T < Tmelt. Keeping the mass of each particle fixed, its
effective radius shrinks with increasing temperature so that
more grains fit inside a given volume and their packing fraction
grows. Once a particle has reached Tmelt, it is removed from the
simulation because “it has melted and trickled down” through
the solid coke bed.

2.1.2. Fluid Equations

If particles occupy a fraction αpðr, tÞ of the local volume, only
αf ðr, tÞ ¼ 1� αpðr, tÞ remains for the fluid phase. As a conse-
quence, the Navier–Stokes equations for a fluid with density
ρf ðr, tÞ and velocity uf ðr, tÞ take the form[39]

∂
∂t
αfρf þ ∇ ⋅ αfρfuf ¼ 0 (7)

∂
∂t
αfρfuf þ ∇ ⋅ αf ρfufuf ¼ αf∇ ⋅ σf þ f ðdragÞ (8)

where the stress tensor for a Newtonian fluid with viscosity μf is
given by

σf ¼ �pI þ μf ð∇uf þ ð∇uf ÞtÞ þ
2
3
μf I∇ ⋅ uf (9)

with the unit matrix I, and f ðdragÞ is the drag force density closely
related to the particle–fluid interaction

Fðp�f Þ
i ¼ �Vi∇p�

Vi

αp
f ðdragÞðr iÞ (10)

As fluid density and pressure are connected via temperature,
the energy transport equation

∂
∂t
αfρf ðϵf þ K f Þ þ ∇ ⋅ αfρfuf ðϵf þ K f Þ

¼ �∇ ⋅ αf pfuf þ ∇ ⋅ αf k
ðeff Þ
f ∇T f þ q̇ðp�f Þ

(11)

for internal and kinetic energy ϵf and K f ¼ u2f =2 needs to be
solved together with Equation (7) and (8). In addition to the work
for compression against pressure and thermal conduction with

effective conductivity kðeff Þf ,[40] heat transferred between particu-
late and fluid phase with rate q̇ðp–f Þ ¼ � αp

Vp
Q̇ ðp�f Þ appears in the

transport equation.
The CFD–DEM Equation (1), (2), (4), (7), (8), and (11) for

compressible, nonisothermal conditions have been applied
successfully to a variety of systems. We have validated our imple-
mentation against measurements on a gas–solid fluidized
bed.[35]

2.2. Simplified Equations of Motion under Pseudo-Steady
Conditions

Even though granular dynamics is inherently not especially
smooth (“stick–slip motion”) on a single- or few-grain level, it
can become steady on meso- and macroscopic scales under
appropriate conditions. In such cases, although the velocity of
a single particle contains abrupt fluctuations, the granular veloc-
ity field upðrÞ is approximately time-independent. Once upðrÞ has
been obtained, e.g., from a short-term CFD–DEM simulation, it
may be used to calculate the future trajectories of each particle by
moving it with small steps according to

dr i ¼ dtupðr iÞ þ drrnd (12)

where drrnd approximates the influence of particle-contacts.
Comparing the actual, local volume fraction with that obtained
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from the previous CFD–DEM simulation, random fluctuations
drrnd are imposed that grow with increasing deviation between
the volume fractions. This way, no real contact detection or force
calculation between neighboring grains is necessary, which tre-
mendously reduces the computational costs of the approach and
allows for much larger time steps. While they are limited
by the Hertz collision time in DEM, they are now controlled
by the much tamer spatial variation of the velocity field the cur-
vature of which needs to be resolved with Equation (12). Only the
fluid Equation (7), (8), and (11) and the particle temperature
Equation (4) with an effective intergrain thermal conductivity[41]

need to be solved. The interested reader can find more informa-
tion, in particular on the partly stochastic contribution, in an ear-
lier publication.[34]

As we replace solid grains with noninteracting tracers follow-
ing the granular velocity field given by previously obtained data,
we call this approach data-assisted CFD with tracers. It is of
course restricted to cases where the granular motion is steady
on mid and large scales, but fluid dynamics and thermal prop-
erties are treated with the same generality as in CFD–DEM and
can show any type of transient behavior.

3. Simulation Setup

The code for our simulations was implemented in the framework
of OpenFOAM, LIGGGHTS[42] and CFDEMcoupling[43] and may
be obtained upon request from our repository https://github.
com/ParticulateFlow/.

3.1. Work Flow of Coupled CFD–DEM and Data-Assisted CFD
Simulations

While CFD–DEM can provide high-quality data for short time
ranges, data-assisted CFD with tracers can cover much longer
process durations but is restricted to a fixed particle velocity field.
If the latter changes slowly over time because of some long-term
process such as variations in the temperature field, both methods
need to be combined as shown in Figure 1. First, a CFD–DEM
run for τCFD�DEM is performed with an initial guess for the posi-
tion of the CZ where ore particles first deform and then leave
the simulation. The particle velocities and volumes are binned
on a grid and time-averaged over a short window to obtain the
granular velocity and volume fraction fields ūpðrÞ and ᾱpðrÞ.
Furthermore, the positions fr ig after τCFD�DEM need to be stored
for the following data-assisted CFD run for which they serve as
initial conditions. Then, over the course of τd:a:CFD ≫ τCFD�DEM,
tracer motion including heat exchange with the surrounding
gas flow is calculated. From the particle temperature field
Tpðr, τd:a:CFDÞ, the new location of the CZ is obtained and com-
municated to the next CFD–DEM simulation, where over
τCFD�DEM the corresponding, new ūpðrÞ and ᾱpðrÞ are calculated.
The final particle locations from the previous CFD–DEM need to
be used as initial conditions because they cannot be provided by
data-assisted CFD which due to the lack of particle contacts does
not produce packings without overlaps. With the updated particle
velocity and volume fraction fields, another data-assisted CFD
run is started. Particle temperatures are initialized with the
temperature field after the previous data-assisted simulation

Tpðr, τd:a:CFDÞ and are subject to further calculation from which
a new CZ is obtained.

This alternation between detailed, numerically expensive
CFD–DEM and approximate, fast data-assisted CFD can be
repeated arbitrarily often until both the temperature field and
the location of the CZ have converged. While τCFD�DEM needs
to be sufficiently large such that the time-window-averaged par-
ticle velocity and volume fraction fields have converged after an
update of the CZ, τd:a:CFD should allow for a substantial change
in the temperature field.

3.2. Setup of the CFD–DEM and Data-Assisted CFD
Simulations

In this work, we used a full-height slot model of a BF with about
28m bed height and a width of up to 15m. Its depth of 1.2 m
corresponded to the distance between two tuyeres. Although
such a slot model cannot picture the full physics of a 3D BF,
it is still useful to develop novel computational methods at rela-
tively low numerical costs before applying them to the 3D case.

Altogether, our simulation contained Np � 1.1� 105 coarse-
grained parcels. We chose species-dependent scaling factors
such that all resulting parcels had approximately the same size
and were small enough to resolve different material layers but
did not lead to an excessive overall number of grains.

A sketch of the geometry can be seen in Figure 2 together with
the initial guess for the shape and location of the CZ. In the

Figure 1. Work flow of coupled CFD–DEM and data-assisted CFD simu-
lations. While CFD–DEM provides time-averaged particle velocity and vol-
ume fraction fields as well as grain positions, data-assisted CFD calculates
the temperature distribution according to this information. The latter is
then used to update the location of the CZ where grains are removed
in both CFD–DEM and data-assisted CFD simulations. Thick, straight
arrows represent the flow of information and the sequence of carried
out calculations; dashed arrows indicate information which is also used
by the next instance of the same type of simulation and not only by
the immediately following one of the other kind.
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CFD–DEM simulations, we removed coke grains with a prede-
fined rate in the raceway regions and modified ore properties in
the CZ according to Equation (6) before deleting them. To this
end, we chose T soft ¼ 1475K and Tmelt ¼ 1675K. The coke
removal rate of ṁcoke ¼ 500 kg s�1 per raceway was artificially
high to enable the passage of several layers within the scope
of a CFD–DEM simulation. The obtained particle velocity field
ūpðrÞ was corrected by rescaling it such that a realistic descent
rate of vdesc ¼ 2mms�1 at the furnace top was achieved. The
most important particle properties such as diameter, density,
or coarse-graining factors are listed in Table 1. The used thermal
models are given in Table 2. More details, e.g., on DEM-specific
parameters can be found in our earlier publication.[34]

As we did not take any chemical reactions into consideration
in this work, we assumed that the hot blast entered the furnace
with a temperature of T in ¼ 2600 K at uin ¼ 200ms�1. Similar
as Zhang et al.,[44] we chose a fixed heat loss coefficient of
hwall ¼ 20Wm�2 K�1 over the walls with Twall ¼ 293K.

Time steps of ΔtCFD ¼ 2.5� 10�4 s and ΔtDEM ¼ 2.5� 10�5 s
led to numerically stable conditions. Close inspection of
the results showed that we could obtain the particle velocity
and volume fraction fields with satisfying accuracy already
with averaging windows of tave ¼ 10 s and simulation durations
τCFD�DEM ¼ 20 s.

Without the need for contact detection and resolution,
we could use comparatively large time steps Δttracer ¼ 0.25 s
four orders of magnitude larger than those for DEM in the
data-assisted simulations. Furthermore, since gas-phase proper-
ties changed much more rapidly than those of the solid grains,
we assumed that the former adapted to the latter instantaneously
so that we solved the time-independent versions of Equation (7),
(8), and (11) for each tracer time step. This allowed us to carry out
multiple episodes of 5 h process time each. Other properties such
as material parameters were the same in both cases.

4. Results and Discussion

The initial particle configuration for our coupled simulations can
be seen in Figure 2a. We created it by first filling the whole fur-
nace with coke and then removing it gradually in the raceway
regions. Once the top material level had fallen below 26.1m,
a pair of ore and coke layers with fixed masses was inserted
and settled under gravity. This procedure was repeated until
the first few layers of ore had reached the predefined CZ which
presents itself in Figure 2a with an abrupt change between layer
and coke-only structure. Then, we performed the alternation of

Figure 2. a) Initial and b) final particle configuration. Although the upper part of the BF was filled with layers of coke (blue) and ore (red), only coke was
present in the region below the CZ. The shape and location of the CZ changed considerably from the initial guess of an inverted V toward a W.

Table 1. Particle properties.

Property Coke Ore

dp [m] 0.044 0.015

ccg 4 10

ρp [kg m�3] 800 3000

Cp [J kg�1 K�1] 850 600

kp [Wm�1 K�1] 1.7 80

Table 2. Thermal models.

Property Model

Convective heat transfer Ranz and Marshall[36]

Eff. thermal conductivity Syamlal and Gidaspow[40]

Intergrain thermal conductivity Carson et al.[41]

Equation of state ideal gas
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CFD–DEM simulations to obtain particle velocity and porosity
fields and data-assisted CFD to propagate the temperature field
and obtain a new CZ. Figure 2b underlines that the latter had
underwent a significant transformation after the observation
period. After each data-assisted episode, an update of the
CZ made itself visible the first few seconds of the following
CFD–DEM simulations. As shown in Figure 3, the slipping
down of coke into regions previously occupied by ore caused
a rather irregular dynamics in terms of the total particle number.
However, once this property had stabilized again and followed an
almost periodic cycle of decrease and recharging as a sawtooth
wave, we could start to sample flow fields for the following data-
assisted run. The velocity fields for the first and the fourth one

are shown in Figure 4. Even though the paths along which the
grains traveled hardly changed at all, the dynamic nature of the
CZ affected their velocity evolution, their residence time, and of
course the location where ore grains would melt. Because we
binned particle velocities on the CFDmesh (with cell sizes some-
what larger than parcels) and subsequently averaged them over a
few layer passage times, the resulting fields were much smoother
than what one would expect from typical granular stick–slip
motion.

The importance of repeated updates of the particle dynamics
becomes visible in the temperature fields in Figure 5. A pro-
nounced change in the temperature field is clearly connected
to a change in shape and location of the CZ which turned from
an inverted V toward a weak W. This behavior indicates that our
simulation actually corresponded to a “wall-working furnace”.[45]

The sequence of Figure 5a–d demonstrates that this transforma-
tion was a gradual process taking place over many hours and
would not have been accessible from short-term investigations.

From the mean particle temperature over time T̄pðtÞ shown in
Figure 6, it can be deduced that our simulations had converged to
a satisfying degree. Not only did T̄pðtÞ fluctuate around a fixed
value during the last two data-assisted runs (the oscillations were
caused by removal and recharging of material) but also did the
CZ update between the third and fourth episode cause hardly any
changes in the temperatures anymore. This observation is fur-
ther backed up by line plots of particle temperatures shown in
Figure 7. Although a massive adaption took place during the first
few hours, the system had reached its steady-state configuration
after about 10 h after which no significant changes could be
observed anymore. Hence, our simulations had covered a suffi-
cient process duration to find the thermal equilibrium state of
the BF.

All calculations were carried out on 8 cores, with wall times of
about 18.3 and 28.4 h for each CFD–DEM and data-assisted CFD
run corresponding to 20 s and 5 h real time, respectively. Hence,
it took about eight days for our iterated procedure starting from
the initial configuration to reach the final one shown in Figure 1.

Figure 3. Number of particles in a CFD–DEM BF simulation over time.
After an initial equilibration phase caused by an update of the CZ, a rela-
tively regular pattern of material decrease due to melting and gasification
in the CZ and the raceways, respectively, followed by recharging once the
particle level had come below a certain threshold, developed. Only after a
“safety period” of at least 20 s, flow fields were sampled for the use in data-
assisted simulations.

Figure 4. Particle velocity field for the a) first and b) fourth data-assisted episode. The change of the CZ influenced where grains had larger velocities
because voids were created below due to melting, and where they had lower ones. Particle stream lines indicated by the dashed curves are less affected.
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One could save some time in the data-generating CFD–DEM
episodes because Figure 3 indicates that they relaxed toward
their new steady state within a few seconds process time, so that
one might reduce τCFD�DEM from 20 s to e.g., 15 s. However,
the main computational costs stemmed from the data-assisted
CFD calculations (more specifically from the solution of the
Navier–Stokes equations and the evaluation of the particle–fluid
interaction accounting for �80% and 10% of the total data-
assisted runtime). Unless a criterion to detect the approach to
the final thermal steady state earlier than by monitoring the
mean particle temperature over two consecutive episodes can
be devised, the most straightforward further reduction of wall
times may be achieved with increasing the computational resour-
ces and performing the calculations on more cores. However,
we stress that communication overheads will limit the possible
gains, e.g., because large grain displacements inherent in

data-assisted CFD with tracers cause very frequent transfers of
particles between processors, which happens even more often
with increasing the number of processors. Hence, we assume
that currently, wall times on the order of several days need to
be accepted to study the behavior of large-scale BFs over process-
relevant durations, which is still far less than standard
CFD–DEM could provide.

5. Conclusion, Outlook, and Challenges

In this work, we have presented an extremely fast, data-assisted
simulation strategy for dense gas–solid flows as found, e.g., in
shaft or BFs. Our approach uses detailed CFD–DEM informa-
tion, but outperforms this method with speed-ups of several
orders of magnitude. In the presented example, our data-assisted

Figure 5. Particle temperature field in the mid-plane at different times. a) Initially, we guessed a shape of CZ with high temperatures below and lower ones
above it. After b) 5 h, the sharp transition had already started softening and a finite-width CZ indicated by the black lines had developed. Over the course of
c) 10 h and d) 20 h, its shape changed from an inverted V toward a weak W.
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calculations ran about a factor of 600 faster than corresponding
CFD–DEM simulations on the same hardware. For 1 s of process
duration, the former took �5.7 s of CPU time while the latter
required 3300 s (both on 8 cores). As they rely on previously
obtained, detailed data, we have in particular shown the impor-
tance to update them during long-term studies to account for
backcoupling of slow processes such as heat transfer on the
underlying dynamics. In this work, we paid specific attention
to the location and shape of the CZ which of course depends
on the particles’ temperatures but in turn affects their dynamics.

It goes without saying that the presented model has been
strongly simplified in several regards for the sake of a clear,
straightforward explanation of the novel algorithmic strategy.
However, none of these simplifications is beyond the scope of
our method. To introduce our computational strategy, we have
chosen a slot model which resulted in a simpler setup and lower
particle and cell numbers, but did not reflect the full physics of a
3D furnace. Going to an actual 3D geometry poses no difficulty
for data-assisted CFD with tracers in addition to somewhat larger

computational costs due to an increase in grain and cell number.
However, this effect can easily be outbalanced using more than
only 8 cores as done in the present work for the larger domain,
which may be expected to work much more efficiently than
increasing their number at constant system size as discussed
in the previous section.

Furthermore, there are several physical and chemical phenom-
ena which call for inclusion in future work. Clearly, calculating
temperature fields without a proper treatment of radiative heat
transfer as well as homo- and heterogeneous chemical reactions
has mainly conceptual value. Adding species transport to the hier-
archy of fluid equations ofmotion will have an impact on runtimes
because fast reactions within the fluid phase typically reduce time
step size and/or increase the number of iterations for the numer-
ical solution to converge. Ore reduction, in contrast, takes place
rather slowly so that the corresponding equations need not be
solved in every step, but e.g., only every 100th.

Once chemical processes will be accounted for, it will also be
necessary to picture the raceway regions, where some of the most
important reactions take place more accurately. Instead of pre-
scribing a static shape as done in this work, it should be calcu-
lated during the CFD–DEM episodes. In this regard, one has to
find a balance between large coarse-graining factors to limit the
total grain number and small ones to allow for a proper resolu-
tion of the raceways. For such scenarios, embedded simulations
as introduced by Queteschiner et al.[46,47] could provide a way out
of this predicament. In subdomains of particular interest, a
higher resolution both in terms of mesh and parcel size is chosen
and coupled with the less resolved surroundings by exchanging
forcing terms. The same technique could also be used to picture
permeable coke windows in the CZ, which can hardly be resolved
in massively coarse-grained calculations.

Finally, one may include trickling of molten iron and slag
down through the coke bed before they reach the pool of liquids
in the BF hearth. Although a numerically cheap method to sim-
ulate drainage under stratified flow in a CFD(–DEM) frame-
work is available,[33] detailed studies on the droplet dynamics
need to be carried out from which a simplified model can be
derived that does not add too much computational costs to
our data-assisted method and that does not rely on particle-level
packing information and contact structure which are not avail-
able in our calculations.

Figure 6. Mean particle temperature over time. A fast, initial increase was
followed by a slow approach toward the steady-state value. Changes in
the CZ after 5 h, 10 h, and 15 h gave rise to slight jumps. After 20 h, the
averaged particle temperature was approximately converged both within a
single data-assisted episode and also between two consecutive ones.

Figure 7. Particle temperature over height in the center of the BF with a) x¼ 0m and b) close to the side with x¼ 4.5m. After 10 h process time,
only minor changes in the temperature field took place anymore.
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Although the aforementioned phenomena can in principle
all be included in our approach with moderate additional costs
so that process-relevant durations can still be covered, we want
to point out a much more challenging issue, too. In practice,
moving bed reactors are infamous for flow irregularities such
as (spontaneous) channel formation with accompanying poor
gas–solid contact or hanging and subsequent collapse of the
bed. Clearly, such atypical behavior cannot be encountered in
our present simulations built upon a single particle velocity
and porosity field at a time. It will take in-depth investigations
to explore the physical origins of these phenomena and to possi-
bly identify order parameters indicating imminent process irreg-
ularities so that data-assisted calculations could be stopped on
demand and detailed CFD–DEM simulations used instead to
picture channeling or hanging.

Even though there are several open tasks, the presented strat-
egy of combined CFD–DEM and fast, data-assisted CFD consti-
tutes a significant step toward virtual experiments on real BFs
with sufficient flexibility to include various physical and chemical
phenomena relevant for industrial purposes.
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