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Abstract: The heat transfer coefficient (HTC) between wa-

ter and air/water sprays and the strand surface is a major

parameter to simulate solidification in continuous casting

processes. The HTC can be calculated via various equa-

tions from literature. However, based on in-house mea-

surements, the application of statistical models for predict-

ing local HTCs has become possible. Several models have

been set up using Python coding and compared regarding

the errormetrics (rootmean squared error andmean abso-

lute error).

Keywords: Regression model, Heat transfer coefficient,

Solidification, Simulation, Continuous casting, Spray

cooling

Anwendung statistischer Lernmethoden auf einen

Datensatz gemessener Wärmeübergangskoeffizienten

beim Stranggießen

Zusammenfassung:DerWärmeübergangskoeffizient (HTC)

zwischen Wasser- und Luft/Wasser-Sprays und der Stran-

goberfläche ist ein wesentlicher Parameter zur Simulation

der Erstarrung beim Stranggussverfahren. Der HTC kann

über verschiedene Gleichungen aus der Literatur berechnet

werden. Basierend auf eigenenMessungen wurde auch die

statistische Vorhersage von lokalen HTCs möglich. Es wur-

den mehrere Modelle mittels Python-Programmierung er-

stellt und hinsichtlich der Fehlermetriken (Wurzel des mitt-

leren quadratischen Fehlers undmittlerer absoluter Fehler)

verglichen.
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1. Introduction

In continuous casting of steel, slab cooling plays a dom-

inant role in controlling the process with respect to effi-

ciency and product quality. Controlled cooling by spraywa-

ter (“air-mist cooling”) is a key to controlling the formation

of surface and internal defects. Therefore, the lengthof sec-

ondary cooling is divided into cooling zones. The amount

of water applied to the strand surface and the adjusted air

pressure vary for each cooling zone and depend on the cast

steel grade. Theseparametersarestored inso-called“cool-

ing tables”. For the whole product mix of a castingmachine

and the related casting parameters, a wide range of pos-

sible combinations of cooling parameters, and thus local

heat transfer, exist. To predict solidification in a continuous

casting process, on-line and off-line numerical simulation

is today state-of-the-art. At the Chair of Ferrous Metallurgy

at the Technical University of Leoben, an off-line simula-

tion platform called “m2CAST” has been developed to use

experimental measurement data in high resolution from

the in-house nozzle measuring stand (NMS) as a thermal

boundary condition. The collected data includes eleven

parameters, among them the local water impact density

(WID) from the water distribution (WD) measurement and

the local heat transfer coefficient (HTC) for various operat-

ing parameters and nozzle types. To reduce the number

of time-consuming measurements to a minimum, regres-

sion modelling was recently applied for the first time on

the voluminous data sets providing a data-driven thermal

boundary condition for solidification simulation [1, 2]; fur-

ther results are presented in this contribution.
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Fig. 1: StructureoftheNozzleMeasuringStandatTechnicalUniversityof
Leoben [3]

2. Nozzle Measuring Stand (NMS)

2.1 Structure

The nozzle measuring stand (NMS) was engineered to sim-

ulate the conditions of the secondary cooling zone via de-

termining the local WID and the local HTC for various oper-

ating parameters and nozzle types. In Fig. 1 the schematic

layout of its construction is presented. A special feature of

the NMS is the possibility of installing two nozzles in a spa-

tial arrangement, such as in a secondary cooling zone, thus

measuring the spray overlap area. This leads to valuable

additional information for certain spray parameters [1, 3].

2.2 Water Distribution (WD) Measurement

To measure the amount of water that impinges on the sur-

face, the nozzles must be installed as shown in Fig. 2; [3].

For the measurement, seven parallelly arranged measur-

ing grids are used, whereby the top view on the grids can

be seen in Fig. 3b), together with a visualization of the dis-

Fig. 3: aParameterNX (dis-
tancebetweennozzle tips) and
Nz (distancenozzle tip to sur-
face),bvisualizationof thegrid
of themeasuring chambers
fromabove [3]

Fig. 2: Schematicbuildofawa-
ter distributionmeasurement
[3]

tance between the nozzle tips (NX) and the span between

the nozzle tip and the surface (Nz) under a) [3].

After a defined time under the water spray, the measur-

ing grids are removed from the NMS and photographed

separately. Using photo-optical analytics, the water distri-

bution can be quantified and visualized (example given in

Fig. 4). Furthermore, theWD in lm–2 is converted to the local

water impact density (WID) in kgm–2s–1 by using the time

span.

2.3 Heat Transfer Coefficient (HTC) Measurement

For the measurement of the HTC, the nozzles must be ro-

tated by 180° to spray the water at the ceiling, where the

inductively heated and moveable specimen is located. The

schematic structure is shown in Fig. 5a). The specimen

itself is insulated to assume a one-dimensional heat con-

duction. The sample is heated up to a specific start tem-

perature TStart with the use of an inductive heating unit and

is moved multiple times through the spray at different po-

sitions. The drop of the temperature is thereby measured

via the three thermocouples. The schematic layout can be

seen in Fig. 5b). The measurements are used to calculate

the surface temperature and the HTC using an inverse heat

conduction model [3].
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Fig. 4: Visualizationof thewater impactdensity in a3D,a frontanda topview

Fig. 5: aSchemeofmeasuring
theheat transfer coefficient,
bschematicstructureofaspec-
imen [3]

2.4 Data Triplets from Measurement

The measured WID is correlated to the calculated HTC

and surface temperature TS. With the involvement of the

sample velocity, a specific HTC and TS can be assigned

to every chamber with the “x-position” and, therefore, its

WID. Figure 6 gives a conception of this correlation. These

data triples, together with the operating parameters, are

used to parametrize regression models to predict the HTC,

which will be explained in Sect. 2.6.

2.5 Simulation software m2CAST

The simulation platform m2CAST includes a solver for the

2D heat conduction and solidification problem, employing

the two-dimensional finite volume method (FVM) coupled

with the implicit alternating direction and inverse-enthalpy

method, providing a CPU-time-saving solution in high-res-

olution. The heat transfer between the support rolls is di-

vided into four zones as shown in Fig. 7. At the NMS, the

HTC of zone III (spray cone) can be measured [1, 3–8].

I. Support rolls

II. Pre-spray zone

III. Spray cone zone

IV. Post-spray cone zone

V. Radiation

Currently, there are two different ways to define the HTC

for the simulation. One possibility delivered Preuler [9] by

investigating theHTCmeasurements andderiving anequa-

tionof anon-linear log-normal function to calculate theHTC

depending on the WID and the surface temperature. The

second option is based on the findings ofWendelsdorf et al.

[10], who developed another empirical description of the

phenomenon. However, modeling with regressions repre-
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Fig. 6: Correspondingdata tripletswater impactdensity—heat transfer coefficient—surface temperature

Measured 
Zone

Fig. 7: Secondarycooling zones [8]

sents a new concept, which will be described further in the

following section.

2.6 Prediction of the HTC Using Regression

Models

The statistical regression approach is employed to pre-

dict variables of interest based on extensive datasets

of independent variables, without explicitly defining the

underlying functional dependencies or physicochemical

relationships, thereby representing a “black-box” model-

ing paradigm. This methodology relies on the acquisition

and analysis of large-scale data to establish empirical cor-

relations between target variables and relevant process

Fig. 8: Courseof theHTCagainstTS independencyof theWID [9]

Fig. 9: Courseof theHTCagainstTS independency toTStart [9]
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TABLE 1

Collection of rounded value ranges for the parame-
ters of the dataset

Parameter Unit Range

TStart °C 950–1195

Nx mm 0–801

Nz mm 130–310

VH2O l min
–1

1.45–17

pH2O bar 0.8–9.4

pAir bar 0–2.7

v m min
–1

0.7–1.9

xPos mm 0–700

TS °C 729.58–1142.64

WID kg m
–2
s
–1

0–55

features, enabling data-driven insights without requiring

prior mechanistic knowledge. In the case of the HTC, there

is a study on this topic by Taferner et al. [1, 2]. For the

following prediction, these parameters have been used:

Nz: distance nozzle to surface

xPos: x-position in spray width

VH2O: water flow rate

pH2O: water pressure

pAir: air pressure

TS: surface temperature

WID: water impact density

Fig. 10: Pearsoncorrelation
matrix

In the first work of Taferner et al. [1], the commercial soft-

ware package MATLABwas used to create different regres-

sion models, whereby an exponential gaussian regression

model delivered the best results.

3. Results & Discussion

3.1 Description of the Dataset

For the statistical investigation, nozzles and spraying pa-

rameters for a wide variety of cooling tables of a cast-

ing machine at voestalpine Stahl GmbH in Linz were

utilized for the WID and HTC measurement at the NMS.

All the statistical learning models were developed using

Python (Version 3.12.3). Additionally, the following pack-

ages have been used: Pandas (2.2.2), NumPy (1.26.4),

Scikit-Learn (1.6.0), Matplotlib (3.8.4), Plotly (5.22.0), and

Seaborn (0.13.2).

In the beginning some data cleansing steps were ap-

plied. Firstly, high values distorted by the “Leidenfrost-Ef-

fect” have been removed from the initial dataset. To set the

range of the useable data, the lower limit for the surface

temperature was chosen to be 700°C. This specific value

can be explained by looking at Fig. 8 from so-called “boil-

ing curves” [9]. For this specific kind of measurement, the

specimen is kept in a local position within the spray with

a predefined initial temperature. The measured HTCs ac-

cord to a constantWIDand just dependonTS. This provides

the definition of the Leidenfrost temperature for the chosen
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Fig. 11: RSMEandMAEagainstpolynomialdegree for apolynomial regressionmodel

Fig. 12: RSMEandMAEagainstnumberof features for apolynomial regressionmodel

experimental setup. In the temperature range of stable film

vaporization, the HTC shows only a moderate dependency

from TS, even if influenced by WID. When coming closer

to the Leidenfrost temperature, which, as expected, also

depends on WID, the HTC increases significantly. As the

physics of heat transfer changes when the temperature falls

below Leidenfrost, 700°C was chosen as the lower thresh-

old of TS for simplicity.

Preuler investigated also the influence of the starting

temperature TStart as shown in Fig. 9. Within the first

seconds of measurement, the capacitive heating of the

measurement device lowers the recalculated HTC. For the

present work, a TS of 50°C below TStart was assumed as the

upper threshold.

After data cleansing, a total of 1892 datasets remain for

the analysis. From this final data set, 129 observations cor-

respond to single-fluid-nozzles and the remaining amount

to twin-fluid-nozzles. In Table 1, all parameters including

their units and ranges are listed.

Using the final data set, a train-test split in a randomized

fashion with a ratio of ¾ to ¼ was conducted and used for
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Fig. 13: Randomforest andpermutation feature importance for a randomforest regressionmodel

all six regression models. This guarantees a non-biased

training of the models.

3.2 Study of Parameters

As described in Sect. 2.6, Taferner et al. [1] used ten pa-

rameters for the developed regression models. Anyhow,

a lower number of used features could prevent overfitting

and increase the quality of the prediction. Hence, an inves-

tigation on the statistical relevance of the spray parameters

has been conducted.

A Pearson correlation matrix was generated using the

complete data set shown in Fig. 10. Focusing on the last

row, the results indicate that theWIDwithavalueof 0.76has

the strongest positive linear correlation. On the other hand,

the analysis pointed out that TS has, with a factor of—0.32,

a substantial negative influence on the HTC. Another im-

portant parameter with a positive correlation would be the

water pressure and flow rate, whereas the air pressure pAIR

shows a neglectable influence. The parameter Nz symbol-

izes the impingement angle of the spray droplets at the

surface and also seems to have only a moderate influence.

Considering that the Pearson correlation matrix only

shows a linear correlation between two parameters, addi-

tional methods to investigate the impact of independent

features on the variable of interest, like variable importance

using the Random Forest algorithm or a feed-forward se-

lection approach during polynomial regression, have been

applied.

3.3 Regression Models

A comprehensive investigation was carried out using six

different regression models and the prepared data set. In

the following sections, the applied regression models and

their selected model parameters are discussed in detail,

except for the linear regression, as there are no adjustable

model properties. It should be mentioned that the models

were initially trained and tested using all the parameters

outlined in Sect. 2.6. Additionally, theywere also evaluated

using only WID and TS as the prediction parameters. Fig-

ure 14 provides an overview of the error metrics root mean

squared error (RSME) and mean absolute error (MAE) for

all models.

3.3.1 Polynomial Regression (PR) Model

Regarding the choice of the polynomial degree, Fig. 11

shows that both error criteria (RMSE and MAE) do not

have their lowest values at the same degree. However, the

RSME for a 2nd and 3rd degree is approximately the same.

Therefore, the latter degree was used for modeling.

Furthermore, the results of the feed forward selection

are visible in Fig. 12. It shows the decreasing error values

against the number of selected features, with the first se-

lected parameter being themost important, the second one

the second most important, and so on. The outcome of the

analysis is that the error drops the most if Ts was further-

more used to the WID as a feature. Additional parameters

contribute to a decrease of the error criteria, however, not

significantly.
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3.3.2 Random Forest Regression (RFR) Model

This regression model employs an ensemble learning ap-

proach. The model is constructed using 100 decision trees.

The model undergoes a 5-fold cross-validation. All other

settings remain at their default values.

For this model a “feature importance” (based on tree

splits) and “permutation feature importance” (based on

model performance drop) have been performed. As it can

be seen in Fig. 13, the same two parameters (WID and TS)

deliver the highest influence on themodel’s accuracy, again

followed by the water pressure pH2O.

3.3.3 Gradient Boosting Regression (GBR) Model

The gradient boosting regression model uses 200 decision

trees, each correcting the residual errors of the combined

prediction from all previous trees. Additionally, the data is

standardized, and themodel uses a learning rate of 0.1with

a maximum tree depth of 5, balancing bias and variance.

Fig. 14: Comparisonof theerror values (RSMEandMAE) for all six regressionmodels for the trainingand test set

3.3.4 Support Vector Regression (SVR) Model

This model utilizes an RBF kernel. It applies Min-Max scal-

ing to both features and target values for improved numer-

ical stability. Hyperparameter tuning is performed using

a RandomizedSearchCV together with a 5-fold cross-vali-

dation to optimize C, gamma, and epsilon.

3.3.5 Gaussian Process Regression (GPR) Model

For this model, a radial basis function (RBF) kernel com-

bined with a WhiteKernel is used. Additionally, a hyperpa-

rameter optimization with 10 restarts are added. Standard-

ization is applied as well.

3.4 Comparison of the Models

Several different regression models were established and

compared to each other. Figure 14 shows the RSME and
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Fig. 15: RegressionModelswiththeusageofall(purple)oronlytwoparameters(red)foraLinearRegression,bPolynomialRegression,cRandomForest
Regression,dGradientBoostingRegression,eSupportVectorRegression, fGaussianProcessRegression
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MAE values for the training and test set of all applied mod-

els. It can be observed that a linear regression yields to the

highest error values. This confirms that a Pearson corre-

lation matrix alone cannot give enough information about

the variable dependencies. The best MAE for the testing

set was found for the GBR with the usage of all param-

eters. This model also led to the lowest RMSE value for

the training set, considering only WID and TS. Overall, this

model delivered the best performance. Furthermore, it can

be observed that the error values increase when just two

parameters are used. The magnitude of this difference de-

pends on the selectedmodel. For theGBR, the RFR, and the

SVR model, the increase is not significantly high. In con-

trast, it has a greater impact on the GPR and PR. In Fig. 15

all plots of the predicted versus the calculated HTC for the

test sets are given.

4. Conclusion

This contribution uses data-driven methods to predict the

HTC in thespraycone regionasa functionof different nozzle

parameters and slab surface temperatures. Comprehen-

sive data cleansing processes were performed to provide

a high-quality data set for modeling. The relationship be-

tween the independent features and the target variablewas

then analyzed using various statistical methods.

Six different statistical methodswere applied formodel-

ing. Among these, GPR achieved the best results in terms

of RMSE and MAE on the test dataset.

The analysis of the variable importance and the model-

ing results clarified that the WID and Ts, in particular, have

the greatest influence on the HTC.
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