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In our prior study (Schneiderbauer, AIChE J, 2017;63(8):3544–3562), we presented a spatially averaged two-fluid
model, where closure models for the unresolved terms were derived. These closures require constitutive relations for the
turbulent kinetic energies (TKEs) of the gas and solids phase as well as for the sub-filter variance of the solids volume
fraction (VVF). In this study, we have performed highly resolved TFM simulations of a set of three-dimensional wall
dominated periodic channels. An a priori analysis shows that these closures are able to correctly predict the wall pro-
files of the sub-grid drag modification, the TKEs, the turbulent viscosities and the VVF without requiring special wall
corrections. Solely the mixing lengths, which is required by the closures, has to be adapted in the vicinity of wall simi-
lar to single-phase turbulence; in particular, the minimum of the filter size and the distance to the wall should be used.
VC 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical

Engineers AIChE J, 64: 1591–1605, 2018
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Introduction

Fluidized beds are widely used in a variety of industrially

important processes. One important application of fluidized

beds is the circulating fluidized bed (CFB) technology, which

implies the return of particles by a looping process. CFBs are

widely used for fluid catalytic cracking, circulating fluidized

bed combustion (CFBC), and chemical looping combustion.

CFBs usually have a riser section, where the solid particles are

transported upwards. Inside risers, there are clusters and

streamers of particles which are continuously formed and bro-

ken.1–8 They are quite large, with sizes of the order of 10–100

particle diameters.2,3 They arise from the instability due to the

relative motion between gas and particles, as well as from the

dissipation of fluctuating energy of particles by both relative

motion between particles and viscous damping.2

During the last decades the analysis of the hydrodynamics

or the efficiency of fluidized beds through numerical simula-

tions has become increasingly common, where the two-fluid

model (TFM) approach has proven to provide fairly good pre-

dictions of the hydrodynamics of gas–solid flows.9 However,

due to computational limitations a fully resolved simulation of

industrial scale reactors is still unfeasible. It is, therefore, com-

mon to use coarse grids to reduce the demand on computa-

tional resources, which inevitably neglects small (unresolved)

scales.2 Many sub-grid drag modifications have, therefore,

been put forth by academic researchers to account for the

effect of small unresolved scales on the resolved meso-scales

in this case.
In this context, the heterogeneity based sub-grid models

(e.g., EMMS method10–13 and its derivatives14–20) as well as

the filtered TFM approach20–34 should be mentioned. While

the heterogeneity based sub-grid models make some specific

assumptions about the form of the unresolved clusters and

streamers (e.g., spherical clusters of specific solids volume

fraction16,20), the filtered approaches aim to find appropriate

constitutive relations for the unresolved terms appearing due

to filtering of the balance equations. Commonly, the filtered

sub-grid modifications are deduced from either fine-grid TFM

(using grid resolutions of several particle diameters to resolve

all relevant flow structures) or well-resolved Euler-Lagrange

(EL) simulations,35–37 which are filtered using filters of differ-

ent sizes. Different markers such as, solids volume fraction

and slip velocity, are then used to classify the sub-filter scale

state and averaged to obtain statistics of the filtered quantities.

It is apparent that those residual correlations show a consider-

able dependence on the filter size as well and therefore this

dependence is not discussed further.
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The pioneering work of Igci et al.22,23 unveils from highly
resolved TFM simulations of periodic domains (where the
weight of the particles balances the pressure gradient) that the

solids volume fraction represents the most important marker
determining the sub-filter state. While their one-marker based
correlations appear to capture the flow in the core of risers
appropriately, their periodic domain simulations do not cap-

ture the effect of bounding walls on the cluster behavior.25

Thus, Igci et al.24,25 introduce wall corrections accounting for
the different behavior of clusters and streamers in the vicinity

of bounding walls.4–6 More recently, several authors presented
a second class of filtered models by recognizing that the pre-
dictions of the unresolved part of the fluid-solid drag force can
be considerably improved by using two markers, these are the

filtered solids volume fraction and the filtered slip veloc-
ity.20,26,27 In the case of these two-marker models, Milioli
et al.26 suggest that wall corrections might not be necessary.

Zhu et al.38 studied the requirement of those wall corrections
in combination with a two-marker drag modification. In partic-
ular, the filtered slip velocity has a negative impact on the fil-
tered drag force in the near-wall regions and hence wall

effects may be properly accounted in these two-marker mod-
els. However, Zhu et al.38 could not make a clear statement
since they investigated bubbling fluidized beds; but in riser

flows there is a clear separation between core and annulus
region, where the near-wall flow behavior is quite different
from that in the core region of the bed.39

Finally, a third class of filtered models employs the con-
cepts of turbulence modeling to derive constitutive relations

for unresolved terms.1,40–44 The development of such turbu-
lence models has a relatively long history in the litera-
ture.2,45–48 On the one hand, Fox and his coworkers40–43

follow the concept of RANS (Reynolds-averaged Navier
Stokes) and on the other hand, Schneiderbauer1 employed
similar to LES (large eddy simulation) a spatial filter to the
balance equations. In particular, Capecelatro et al.41–43,49

derived a Reynolds-stress model (RSM), which is very
detailed with respect to the mathematical derivation, but it
assumes low particle Reynolds numbers and low particle
mass loadings, where the interphase momentum exchange

term can be approximated by Stokes’ law. Nevertheless, for
small particles it provides fairly good estimates of the gas–
solid flow near walls.41 In contrast, the spatially-averaged

two-fluid model (SA-TFM) presented in our previous study1

employs more general representation of the fluid-particle drag
force, which is applicable to a wide range of particle Reyn-
olds numbers. Here, the unresolved part of the gas–solid drag

force is derived by using a series expansion of the micro-
scopic drag coefficient. The subsequent averaging of this line-
arized drag force reveals that the unresolved part of the inter-

phase momentum exchange is a function of the turbulent
kinetic energies (TKEs) of both, the gas and solid phase, and
the variance of the solids volume fraction (VVF). These
dependencies are a direct result of the Taylor expansion,

which is in contrast to state-of-the-art filtered models solely
guessing the most appropriate markers for the sub-filter state.
Instead of using functional fits to relate the values of the

TKEs and VVF to the local resolved meso-scale state of flow,
equations for the TKEs as well as the VVF are derived. This
enables the accurate determination of the averaged drag force.
However, (i) a detailed a priori evaluation of the model pre-

dictions near bounding walls and (ii) a comprehensive valida-
tion against experimental data is still missing.

In part I of this article, the SA-TFM approach is, therefore,
verified in the case of periodic channel flows of Geldart A and
B particles by performing an a priori analysis of the unre-
solved terms near bounding walls. In particular, we oppose the
predictions of the individual models for the sub-grid drag
modification due to unresolved heterogeneous structures (i.e.,
clusters and streamers), the Reynolds stresses and the VVF-
equation to filtered data obtained from highly resolved simula-
tions of three-dimensional periodic channels. Especially, the
corrections to the SA-TFM approach near the bounding walls
are discussed. In Part II50 of this article, the SA-TFM approach
is applied to the coarse grid simulation of bubbling fluidized
beds51,52 and risers53 as well as validated against experimental
data. Especially, in the latter application the flow behavior is
considerably affected by the bounding walls.

SA-TFM Approach

In Table 1 (Eqs. (1) through (7)) the SA-TFM approach is
summarized. The filtered continuity and momentum equations
have the same form as the micro-scopic TFM equations
(which are summarized in Table A1 in the Appendix) with the
phase velocities and other variables now representing filtered
: (or Favre averaged, e: ) values.1,54 The filter operation for a
continuous space-time variable gðr; tÞ is given by

gðx; tÞ5
ððð

Gðx; r;DfÞgðr; tÞ dr; (8)

with the filter kernel Gðx; r;DfÞ satisfying
Ð Ð Ð

Gðx; r;DfÞ
dr51. Here, Df denotes the filter size. Consequently, Favre
averages of the i-th component of the solid- and gas-phase
velocities, ui and vi, read as

eui5
/ui

/
;

evi5
ð12/Þvi

12/
;

(9)

where / represents the solids volume fraction. In Eq. 2, qq

ðq 2 fg; sgÞ further denotes the density of either the gas
phase g or the solid phase s. The filtered momentum equations
unveil additional terms representing the unresolved part of the
gas–solid drag (denoted by H) and Reynolds stress-like contri-
butions, Rs;ik52qs/u00i u00k and Rg;ik52qgð12/Þv00i v00k , coming
from the phase velocity fluctuations, u00i 5ui2eui and
v00i 5vi2evi. H is commonly defined as

H512

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðvi2uiÞ bðvi2uiÞ

q
eb ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðevi2euiÞðevi2euiÞ

p ; (10)

where b denotes the microscopic drag coefficient (Eq. A5 in

the Appendix) and eb is the drag coefficient computed from fil-
tered quantities. Thus, the fractional correction H is a measure
of the subgrid heterogeneity implying a reduction of the

resolved drag force ebðevi2euiÞ. The Reynolds stresses are
approximated by the Boussinesq hypothesis (Eq. 7) and there-
fore, these are determined by the TKEs of both phases,

kg ð� gv00i v00i =2Þ and ks ð� gu00i u00i =2Þ, and the turbulent viscosities,

ltg and ltg. In the case of sufficiently large filter sizes budget

analysis1,23 show that the filtered kinetic theory stresses Rkc
s;ik

(Eqs. A3 and A7 in the Appendix) appear negligible compared
to the Reynolds-stress like contributions and thus, these are
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not considered in this study. However, in the dense flow
regime (i.e., / > 0:5) the contribution stemming from the fil-

tered frictional stresses Rfr
s;ik appears non-negligible even

though we employ large filter sizes.20 It has to be stressed that
in a first step we approximate the filtered frictional stresses by

its microscopic counterpart, Rfr
s;ik (Eqs. A7, A14, and A15 in

the Appendix), evaluated by using deviatoric part of the fil-

tered rate-of-deformation tensor, eSs;ik. Closure models for the

filtered frictional stress models will be discussed in future
publications.

Table 1. Summary of SA-TFM Model
1

1. Continuity equations of gas and solid phase:

@12/
@t

1
@

@xk
ðð12/ÞevkÞ50

@/
@t

1
@

@xk
ð/eukÞ50

(1)

2. Momentum equations of gas and solid phase:

@ð12/Þqgevi

@t
1

@

@xk
ðð12/ÞqgevievkÞ52ð12/Þ @p

@xi
1

@

@xk
Rg;ik2ð12HÞebðevi2euiÞ1ð12/Þqggi;

@/qseui

@t
1

@

@xk
ð/qseuieukÞ52/

@p

@xi
1

@

@xk
Rs;ik1R

fr

s;ik

� �
1ð12HÞebðevi2euiÞ1/qsgi:

(2)

3. Drag correction due to sub-filter heterogenous structures:

H5

@b
@ð12/Þ

� �
12/ ;ev ;eu

ffiffiffiffiffiffiffiffiffiffi
2/02

q
n/g

ffiffiffiffiffi
kg

p
2n/s

ffiffiffiffi
ks

p� �
eb ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðevi2euiÞðevi2euiÞ

p : (3)

4. TKE of the large-scale velocity fluctuations (eb/5eb=/):

kg5
1

C2
�g

2
/eb/lmg

ð12/Þqg

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/eb/lmg

ð12/Þqg

 !2

12 l2
mg
eSg;ij
eSg;ij1

ngs/eb/lmgk1=2
s

ð12/Þqg

 !vuut0B@
1CA

2

;

ks5
1

C2
�s

2
eb/lms

qs

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieb/lms

qs

 !2

12 l2
ms
eSs;ij
eSs;ij1

ngs
eb/lmsk

1=2
g

qs

 !vuut0B@
1CA

2

:

(4)

5. Turbulent viscosity (q 2 fg; sg):

ltq5qqk1=2
q lmq with lmq5CmqDf : (5)

6. Variance of the sub-filter volume fraction fluctuations:

/02 5
8

3

n2
/sks

@/
@xk

� �2

@euk

@xk
1C/sC�s

k
1=2
s

lms

� �2
: (6)

7. Reynolds-stress like contributions:

Rg;ik52
2

3
ð12/Þqgkg12ð12/Þltg

eSg;ik;

Rs;ik52
2

3
/qsks12/lts

eSs;ik:

(7)

8. Model constants:

Constant Value Constant Value Constant Value Constant Value Constant Value

ngs 0.8 n/s 0.1 n/g 20:5ð12/Þ C�g 0.7 C�s 1

Cmg 0.4 Cms 0.25 C/g 0.4 C/s 0.25
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Constitutive relations for the unclosed terms, these are H,

kg, ks, ltg, and ltg, are given in Table 1 as well. Here, H is

derived from averaging the microscopic drag force, where the

microscopic drag coefficient is approximated by a Taylor
series expansion.1 The constitutive model for the drag correc-

tion clearly unveils that the meso-scale drag (evaluated from

filtered quantities) is mainly reduced in regions of a consider-

able VVF /02 ð5/22/
2Þ,36,55 as well as in regions showing a

high degree of sub-filter velocity fluctuations. Thus, transport

equations for kg, ks, and /02 were derived.1 In moderately

dilute and moderately dense gas–solid flows (i.e., solid volume

fractions between 0.1 and 50%)40 it is plausible to neglect the

transport of the turbulent velocity fluctuations and to assume

that turbulence is determined by local production and dissipa-
tion.42 We will show later that employing this simplification

reveals good agreement with the fine grid data. In contrast to

single phase turbulence an additional source of turbulent pro-

duction appears in the equations for kg and ks, which is stem-

ming from the interfacial work due to the gas–solid drag. This

additional source of turbulence was also recently described by

Fox,40 who referred this phenomenon to as cluster induced tur-

bulence (CIT). Interestingly, the constitutive model for /02

(which can be derived from the microscopic continuity equa-

tion) is mostly dependent on the kinetic energy of the solids
velocity fluctuations and the gradient of the solids volume

fraction. Thus, velocity fluctuations as well as gradients in the

particle concentration enhance the sub-filter heterogeneity of

the granular system. Physically, this is mostly pronounced at

the borders of resolved clusters and bubbles.1 Our previous

study clearly shows that the turbulent viscosities can be

approximated by a mixing length model (Eq. 5), that is

ltq5qqk1=2
q lmq;

where the mixing length lmq5CmqDf is determined by the filter

width Df . Finally, in contrast to state-of-the-art filtered clo-

sures the present constitutive relations solely depend on nine

model constants,1 which appear to apply to a wide range of

particle properties (size and density).

Case Description

To investigate the heterogenous sub-filter structures near
bounding walls we performed fine grid simulations following
previous work.20,26,27 Thereby, we employed a kinetic-theory
based TFM,9,56 which is discussed in the appendix (Table A1
in the Appendix), to three-dimensional periodic channels29,44

of width 2W, depth D, and height H (Table 2). Here, we
applied a fixed superficial gas velocity, which was obtained by
adjusting the gas-phase pressure gradient using a PID (propor-
tional-integral-derivative) controller. It has to be further noted
that only the first horizontal dimension is constrained by walls,
while the second horizontal and the vertical dimensions are
considered periodic (compare with Figure 1 in our previous
study44). In dense regions, i.e., where the solids volume frac-
tion is close to the maximum packing conditions and the inter-
particle forces are dominated by long enduring multiple fric-
tional contacts, the solid stress was closed by using a inertial
number dependent rheology (Eqs. A14 and A15 in the Appen-
dix).9,57 The wall shear stresses and the flux of fluctuation
energy at the bounding walls were modeled by partial-slip
boundary conditions proposed recently.58 These boundary
conditions incorporate sliding and non-sliding collisions.59–65

Recently, it was shown that these boundary conditions apply
well to fluidized beds,9 moving beds,9 and riser flows.66 The
main physical properties relevant for this study are summa-
rized in Table 2.

Table 2. Material Properties and Operating Conditions for

the Fine Grid Simulations
16,20

Property Case 1 Case2

/max 0.6
/fr 0.4
h/i=/max 0.25
lst

i 0.38 (5tan ð20:8
� Þ)

ds 75 lm 150 lm
qs 1780 kg m23 2500 kg m23

qg 1.224 kg m23 1.224 kg m23

lg 1:78 � 1025 kg m21s21 1:78 � 1025 kg m21s21

ut 0.26 m s21 0.96 m s21

Frp 92 626
Lch=ds 4.5 8.55
Wg 5 m s21

D̂g 1 1
D̂

3

d 2563643512

Note these properties correspond to Geldart group A and B type particles
(/max: solids volume fraction at maximum packing conditions; /fr threshold
solids volume fraction, where the frictional stress become active; h/i:
domain averaged solids volume fraction; lst

i : static coefficient of internal
friction; ds: particle diameter; qs: particle density; qg: gas-phase density; lg:
gas-phase dynamic viscosity; Wg: superficial gas velocity; ut: terminal set-
tling velocity; Frp: particle Froude number; D̂g: dimensionless grid spacing;
D̂d : dimensionless domain size, which is given by D̂d52Ŵ3D̂3Ĥ).

Figure 1. Snapshot of particle clusters in a three-
dimensional periodic channel for Case 2.

[Color figure can be viewed at wileyonlinelibrary.com.]
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The convective terms in the momentum equations (Eqs.
A2 and A3 in the Appendix) are discretized by using a
second-order upwind scheme. The derivatives appearing in
the viscous terms are computed by a least squares method,
and the pressure-velocity coupling is achieved by the SIM-
PLE algorithm, whereas the face pressures are computed as
the average of the pressure values in the adjacent cells (linear
interpolation).

The simulations were started from a slightly nonuniform
settled state to expedite the development of inhomogeneous
flow structures. After an initial transient period the system
reached a statistical steady state with persistent temporally
and spatially distributed clusters (compare with Figure 1).
Following previous work,1,26,27 snapshots of the flow field
were collected at various times after the initialization phase.
These computational data were then filtered using filters of
different sizes, where we employed a box filter in this study
defined as

Gðx; r;DfÞ5
1

D3
f

; if r2x 2 ½2Df=2;Df=2�3

0; otherwise

8><>: (11)

Finally, it has to be emphasized that the grid spacing was set
fine enough the resolve all relevant heterogeneous struc-
tures.67–74 For example, Fullmer and Hrenya67 obtain mesh-
convergence of TFM using a grid spacing of about 4:4ds in the
case of moderately-dense gas–solid flows of Geldart A type
particles, while the simulations of Uddin and Coronella69

unveil that much larger grid spacings can be used for Geldart
type B particles. Table 2 shows that we used a grid spacing of
4:5ds and 8:55ds for the Geldart type A and B particles,
respectively. These values clearly meet the above mesh-
convergence requirements. Note that we made the filter size
and grid spacing dimensionless by using the characteristic
length scale,20,37,75

Figure 2. PDFs (probability density function) of the normalized filtered solids volume fraction /=/max for different
dimensionless filter sizes, D̂f5Df=Lch and a domain averaged volume fraction of h/i=/max50:25.

Figure 3. Fractional correction, H, as a function of the normalized filtered solids volume fraction, /=/max, for Case
1 in (a) the center of the channel and (b) near the walls.

The symbols correspond to measurements from the fine grid simulations and the solid lines denote the predictions employing

Eq. 3.
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Figure 4. Normalized fractional correction, ð12HÞ=ð12HcenterÞ, as a function of the normalized horizontal coordi-
nate, x=W, for Case 1 for different normalized solids volume fractions, /=/max.

The dashed-dotted line in (c) corresponds to the drag modification proposed by Sarkar et al.27 for D̂f 515. The remaining symbols

and lines have the same meaning as in Figure 3.

Figure 5. Fractional correction, H, as a function of the variance of the solids volume fraction, /02 , for Case 1 at dif-
ferent locations in the vertical channel, x=W.

The symbols and lines have the same meaning as in Figure 3.

Figure 6. Fractional correction, H, as a function of the normalized filtered solids volume fraction, /=/max, for Case
2 in (a) the center of the channel and (b) near the walls.

The symbols and lines have the same meaning as in Figure 3.
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Lch5
u2

t

g
Fr22=3; (12)

where ut denotes the terminal settling velocity, g the standard

acceleration due to gravity, and Fr5u2
t =ðdsgÞ the particle-

based Froude number.

A Priori Analysis of Gas–Solid Flows Near Walls

In order to elucidate the applicability of the SA-TFM

approach to different gas–particle flow regimes (i.e., dilute,

dense), Figure 2 presents the PDFs (probability density

function) of the filtered solids volume fraction for different

filter sizes obtained from both fine grid simulations. The

figure discloses that even though the domain averaged volume

fraction is h/i=h/maxi50:25, the PDFs show their maxima at

h/i=h/maxi50:025 and h/i=h/maxi50:015 for the Geldart

type A and B particles, respectively. This, in turn, implies that

most of the filter samples represent moderately dilute (i.e.,

0:001�/�0:05) to moderately dense (i.e., 0:05�/�0:5) con-

ditions. In particular, here particle–particle collisions are the

dominant contribution to the micro-scopic particle stress ten-

sor Rs;ik5Rkc
s;ik1Rfr

s;ik (Eq. A16 in the Appendix). Collisional

particle flows can exhibit particle-phase turbulence (e.g., due

to mean shear) even though in the absence of the fluid phase

and the momentum coupling between the two phases can lead

to a new source of turbulence, which is stemming from the

interfacial work (i.e., drag).1 Here, Rs is much larger than Rkc
s .

In contrast, in dilute gas–particle flows (/�0:001) the kinetic-

streaming contribution to the particle-phase stress tensor gets

significant compared to the turbulent stresses.40 This, in turn,

implies that Rkc
s;ik has to be considered in the momentum Eq. 2 in

dilute gas–particle flows, which would require a closure model

for Rkc
s;ik . In very dense gas–solid flows (i.e., close to maximum

packing conditions; /�0:5), frictional contacts get dominant9;

these can be considered as considerably source of turbulence dis-

sipation and consequently turbulent fluctuations become insig-

nificant under these conditions.1 However, the figure shows that

the number of filter samples in the dilute and dense regimes is

very low for both cases and therefore, we solely consider moder-

ately dilute to moderately dense conditions in Figures 3–16.

These figures will clearly show that the SA-TFM approach is

applicable to these flow regimes. It has to be further stressed that

the SA-TFM approach can be further extended to the dense

regime if an appropriate frictional stress model is applied (com-

pare with Eq. 2). This will be shown in part II of this article.
Figure 3 shows the results of the a priori analysis for the

fractional correction H (Eq. 3) for Case 1 (Geldart A type par-

ticles). The figure clearly shows that Eq. 3 correctly predicts

the reduction of the drag force due to the formation of heterog-

enous structures in the channel center (Figure 3a) as well as

near the channel walls (Figure 3b). Furthermore, the fine grid

simulations reveal that H gets larger with increasing normal-

ized filter size (D̂f5Df=Lch), which is generally accepted

in the literature.20,22,23,26–29 Remarkably, Eq. 3 correctly

Figure 7. Normalized fractional correction, ð12HÞ=
ð12HcenterÞ, as a function of the normalized
horizontal coordinate, x=W, for /=/max50:5
and D̂57:5 (Case 2).

The dashed corresponds to the drag modification

proposed by Schneiderbauer and Pirker.15 The remain-

ing symbols and lines have the same meaning as in

Figure 3.

Figure 8. Normalized large-scale TKEs of the gas and solid phase, kq=u
2
t , as a function of the normalized horizon-

tal coordinate, x=W, for D̂f57:5.

The symbols correspond to measurements from the fine grid simulations and the solid lines denote the predictions employing Eq. 4

with lmq5Cmqmin ðDf ; dÞ.
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estimates the filter size dependence of the drag reduction, even

though there is no explicit dependence on the filter size in the

closure model. In particular, the filter size dependence is hidden

in the variances /02 , kg, and ks; their filter size dependencies

will be discussed later. Comparing Figures 3a, b further

suggests that the heterogeneous structures are more pronounced

near the wall, which manifest in a higher drag reduction at equal

filter size and equal filtered solids volume fractions. This has

also been observed by Icgi and Sundaresan.23 They rationalized

this increase of the drag reduction near walls as follows: Fluctu-

ations of the solids velocity and the solids volume fraction will

be dampened in the vicinity of solid boundaries. As the fluctua-

tions associated with the meso-scale structures contribute to

breakup of clusters, diminished fluctuations near the boundaries

result in larger clusters and hence lower drag coefficient.
In Figure 4 we delineate the behavior of H for Case 1 as a

function of the normalized horizontal coordinate x=W, that is

the distance from the channel center normalized by the half of

the channel width, W. It has to be noted that in Figure 4 the

fractional correction is normalized by its value at the center,

Hcenter. Depending on the filter size the modification of the

resolved drag force, 12H, is up to 30% smaller than observed

in the core of the channel. Note that our results cannot be com-

pared directly with the findings of Igci and Sundaresan,23 since

we solely investigate the radial dependence of H instead of the

radial dependence of the total filtered drag coefficient. In addi-

tion, we employ a three-dimensional vertical channel flow

instead of studying a two-dimensional riser. However, our

results clearly confirm that the drag modification at the channel

wall is considerably different compared to the center yielding a

more distinct reduction near the wall. For a more detailed dis-

cussion on the impact of different parameters, such as channel

width, the reader is referred to Igci and Sundaresan.23

Figure 9. Parity plot comparing ks=D
2
f obtained from

(i) filtering Case 1 and (ii) Eq. 4.

The filter size is D̂f 515. The colorbar corresponds to

the probability of occurence of different pairs of mea-

sured and modeled TKEs.

Figure 10. Normalized large-scale TKEs of the gas and solid phase, kg=D
2
f and ks=D

2
f , as a function of the scalar

shear rates,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sg;ij

~Sg;ij=2
q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ss;ij

~Ss;ij=2
q

, at different locations x=W for Case 1.

The symbols indicate the fine grid data, while the solid and dashed lines correspond to Eq. 4.
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Figures 4a–c further show that Eq. 3 provides fairly good
estimates of H near the bounding walls for different filtered
solids volume fractions. Remarkably, it appears that no wall
corrections for H are required here. However, it has to be
noted that for the evaluation of Hðkg; ks;/02Þ, the TKEs of the
gas and the solid phase (kg and ks) as well as of VVF (/02 )

were determined directly from the fine grid simulations
(instead of using Eqs. 4 and 6 summarized in Table 1) in order
to study the accuracy of Eq. 3 itself. The predictiveness of the
constitutive relations for kg, ks, and /02 is discussed later. It
has to be further stressed that the model constants given in
Table 1 take the same values throughout the article and these

Figure 11. Normalized large-scale TKEs of the gas and solid phase, kg=D
2
f and ks=D

2
f , as a function of the scalar

shearrates,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sg;ij

~Sg;ij=2
q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ss;ij

~Ss;ij=2
q

, at different locations x=W for Case 2.

The symbols and lines have the same meaning as in Figure 10.

Figure 12. Normalized large-scale viscosities of the gas and solid phase, mtgg=u3
t and mtsg=u3

t , as a function of the
normalized horizontal coordinate, x=W, for D̂f57:5.

The symbols correspond to measurements from the fine grid simulations and the solid lines denote the predictions employing

Eq. 5 with lmq5Cmqmin ðDf ; dÞ.
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are, therefore, not adjusted to improve the agreement between
model predictions and filtered data. In addition, Figure 4c
shows exemplarily the prediction of the filtered sub-grid drag
modification of Sarkar et al.,27 which employs a two-marker
representation, that is Hð/; eugsÞ; these are the filtered solids
volume fraction and the filtered gas–solid slip velocity.
According to Milioli et al.26 the two-marker representation of
the filtered drag force may be appropriate to account for the
different sub-filter behavior near walls. However, our results
do not support this assumption. While the correlation of Sarkar
et al.27 unveils nearly no reduction of H for x=W < 0:8 in cor-
respondence with the fine grid data, it does not exhibit a reduc-
tion of H in the annulus region (i.e., x=W > 0:8) as well. The
latter can be explained by the merely slight increase of the fil-
tered slip velocity in the annular region (not shown here).
Solely a considerable increase of the filtered slip velocity
would yield the appropriate behavior of Hð/; eugsÞ near the

wall. This, in turn implies, that the sub-grid state near the solid
walls cannot be characterized appropriately by only using the
filtered solids volume fraction and the filtered slip velocity.

As extensively discussed in our previous study,1 the frac-
tional correction of the drag force H is considerably affected
by the formation of sub-grid clusters (i.e., heterogenous sub-
grid structures), which can be reduced to the value of /02 .
Thus, in Figure 5 the sub-grid drag modification H is plotted
as a function of /02 for different locations in the channel,
x=W, for Case 1. Note that x=W50:97 is very close to the
solid walls. In particular, the distance to the wall is 4Lch. The
figure reveals that Eq. 3 correctly predicts the functional
dependency of H on VVF. Interestingly, in this representation
H does not unveil a considerable filter size dependence. In
fact, samples of larger /02 correspond to larger filter sizes and
these, in turn, show larger values of H. Remarkably, the Tay-
lor expansion approach yields even good predictions at large

Figure 13. Normalized kinematic large-scale viscosities of the gas and solid phase, mtg=D
2
f and mtsg=u3

t , as a func-
tion of the normalized filtered solids volume fraction, /=/max, for Case 1 in (a) the center of the channel
and (b) near the walls.

The symbols correspond to measurements from the fine grid simulations and the solid lines denote the predictions employing

Eq. 5.

Figure 14. Normalized kinematic large-scale viscosities of the gas and solid phase, mtq=D
2
f , as a function of the nor-

malized filtered solids volume fraction, /=/max, for Case 2 in (a) the center of the channel and (b) near
the walls.

The lines and symbols have the same meaning as in Figure 13.

1600 DOI 10.1002/aic Published on behalf of the AIChE May 2018 Vol. 64, No. 5 AIChE Journal



/02 in the core of the channel. However, in the annulus, Eq. 3

slightly underpredicts the fine grid data for very large /02 .
Here, considering higher order terms in the Taylor expansion
of the microscopic drag force bðv2uÞ may improve the pre-

dictions very close to the wall for /02 e/2
.76 Since the error is

very small, we do not discuss these higher order approxima-
tions in this article. This will be done in future studies.

In Figures 6 and 7 the predictions of Eq. 3 are compared
with fine grid data obtained from simulations using Geldart B
particles (Case 2). On the one hand, Figure 6 confirms that Eq.
3 yields an appropriate scaling of H with the particle proper-
ties, such as density and diameter. However, it has to be noted
that for the Geldart B particles the agreement of Eq. 3 with the
fine grid data is not as good as obtained for Case 1. This is
stemming from the correlation coefficients (model constants)
n/g and n/s, which do not show exactly the same values in
both cases; nevertheless, to examine the predictability of the
SA-TFM approach, we used the values given in Table 1 for
the model constants throughout the article as emphasized ear-
lier. To further improve the SA-TFM-predictions, future

studies will adapt a dynamic adjustment procedure,28,29,77

which enables the determination of those coefficients directly
from the coarse-grid simulation. On the other hand, Figure 6b
suggests that near solid boundaries the drag reduction obtained
for Case 2 enhances as well. It has to be further delineated that
Case 2 shows a core-annular flow similar to Case 1 (compare
with Figure 1) with a dilute core and a dense annular flow. In
this respect, Figure 7 reveals that for larger particles the influ-
ence of the dense annular region is much more pronounced
toward the channel center (approx. from 0:6 < x=W < 1),
while in the case of Geldart A particles only a small region
near the wall shows a different behavior compared to the core
(approx. from 0:8 < x=W < 1). This can be explained by the
integral length scale of the “eddies” of the solids velocity,
which is u2

t =g.49 While for Case 2 this integral length is eight
times larger than the integrals lengths scale for Case 1, the
domain size for Case 2 is just four times larger since we scaled
the channel using ðu2

t =gÞFr22=3. Note that the latter length
scale corresponds to a dissipation length scale, where the parti-
cle clusters dissipate to “molecular” fluctuations.75 To sum up,

Figure 15. Normalized variance of the solids volume fraction, /02=Df, as a function of the normalized filtered solids
volume fraction, /=/max, for Case 1 in (a) the center of the channel and (b) near the walls.

The symbols correspond to measurements from the fine grid simulations and the solid lines denote the predictions employing

Eq. 6.

Figure 16. Normalized variance of the solids volume fraction, /02=Df, as a function of the normalized filtered solids
volume fraction, /=/max, for Case 2 in (a) the center of the channel and (b) near the walls.

The symbols and lines have the same meaning as in Figure 15.
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Eq. 3, in turn, precisely estimates the increase of the drag
reduction with decreasing distance from the solid walls. In
contrast, the two-marker filter drag modification Hð/; eugsÞ
proposed by Schneiderbauer and Pirker,20 which was derived
from highly resolved bubbling fluidized bed simulations of
Geldard B particles, does not appropriately account for the dif-
ferent clustering behavior near the walls, even though a second
marker is used to characterize the sub-filter state. In fact, the
model of Schneiderbauer and Pirker20 actually predicts a smaller
reduction of the drag force near the walls than in the center (i.e.,
ð12HÞ=ð12HcenterÞ > 1) since on average our fine grid simula-
tion of Case 2 unveils smaller filtered slip velocities in the annular
region than in the core of the channel (not shown here).

To be able to compute the fractional correction of the
resolved drag force H in a coarse grid simulation, it remains to
discuss the constitutive relations for kg, ks, and /02 . Figure 8a
demonstrates that the present constitutive relations for kg and ks

(Eq. 4) considerably overestimate the TKE near the solid walls
when employing equation lmq5CmqDf (dotted line), where q
denotes either the gas g or solid phase s. It is well known from
single phase turbulence modeling that such a simple model for
the mixing length does not unveil the correct limit of the TKE
near the wall.78 In analogy, to the single phase Smagorinsky
model79 we employ the following correction to lmq

lmq5Cmq min ðDf ; dÞ; (13)

where d is the distance from the wall. However, even though
employing Eq. 13 considerable improves the estimates of kq

near the wall, Eq. 4 overpredicts the TKEs in the annular
region. This can be explained by the high anisotropy of the
components of the TKE near solid walls.41 While the wall-
normal components of solid phase velocity fluctuations tends
to zero when approaching the wall, the tangential fluctuations
are solely damped by elastic frictional particle–wall collisions.
Thus, we employ the following representation for kq directly
adjacent to solid boundaries

k
^

q;?50;

k
^

q;k5k
^

q5
2

3
kq;

(14)

where kq is computed from Eq. 4 using Eq. 13. Remarkably,
this simple approximation of the anisotropy of the TKE near
the wall appropriately predicts the TKE for x=W > 0:9 for
both particle types, i.e., Cases 1 and 2 (solid lines in Figure 8).
It has to be further emphasized that the algebraic Eq. 4 appears
sufficient to determine the TKEs accurately and thus, it is
apparent that the convective and diffusive transport have
solely a minor role in moderately dense gas–solid flows.

Figure 8 additionally reveals that the profiles of kqðxÞ
strongly depend on the particle properties. While in the case
of the Geldart A type particles kqðxÞ show their maximum
value very close to the solid walls, in the case of the Geldart
B type particles kqðxÞ exhibits a maximum near the core of
the channel. The different behavior of the TKEs can be delin-
eated as follows. Similar to turbulent single phase channel
flows, high shear rates near the wall generate turbulent velocity
fluctuations. However, in gas–solid flows there is a second
mechanism generating those turbulent fluctuations, that is the
interfacial work. Due to this latter process TKE is transferred
from the gas to solid phase, which results in a reduction of kg

and in an increase of ks; this mechanism appears more pro-
nounced near walls. In addition, as already elaborated the

integral length scale of the turbulent eddies is much larger in
the case of the type B particles than in the case of type A par-

ticles. This, in turn, implies that the maximum of the TKEs

(which is also observed in single phase flows) is closer to the
wall in the case of small particles. Finally, it has to be empha-

sized that the model constant C�g (50:7) appearing in Eq. 4

takes a slightly smaller value than in our previous work,1 where
is was set to C�g51. This might be related to the considerably

higher superficial gas velocities employed in this study, which
are at least 10 times higher than in Schneiderbauer.1 Future

studies will elaborate in more detail the dependence of C�g on

Wg.
To investigate the variation of the bin-averaged model pre-

dictions, Figure 9 exemplarily presents a parity plot comparing

the model predictions for the solid-phase TKE (Eq. 4) with
their filtered counterparts obtained from the fine grid simula-

tion of Case 1. The figure clearly shows that most of the data

points are very close to the identity line indicating a good
agreement between Eq. 4 and the filtered solid-phase TKE. It

has to be stressed that pairs of measured (from fine grid simu-

lation) and modeled TKEs far away from the identity line are
very unlikely to occur. Furthermore, computing the Pearson

correlation coefficient, q, unveils a high positive correlation
between filtered and modeled TKEs. In particular, we find q
> 0:8 for both, the gas and the solid phase.

As elucidated in the previous paragraphs, in gas–solid flows

there are two main production mechanisms generating turbu-
lent velocity fluctuations. The production due to gradients of

the velocity (shear induced turbulence, SIT) is dominant in

regions of high shear rates; here, kq / eSq;ij
eSq;ij (q 2 fg; sg),

which is also indicated by the dashed-dotted lines in Figures

10 and 11. In contrast, the production due to interfacial work
(CIT) is important in regions of low shear rates. In this case,

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieSq;ij
eSq;ij=2

q
�102, Figures 10 and 11 reveal that kq is

determined by the contribution stemming from the interfacial

work, which is considerably larger than the contribution com-
ing from SIT (dashed-dotted line in Figures 10 and 11). It has

to be emphasized that the contribution of CIT is effective as
long as the slip velocity is non-zero (i.e., the drag coefficient

is non-zero), even though there is no meso-scopic shear.1,40–43

Figures 10 and 11 further demonstrate that Eq. 11 is in fairly
good agreement with the numerical data obtained from highly

resolved simulations. Especially close to solid walls, again the

considerable reduction of the TKEs is observed for the Geldart
B type particles.

In our previous study, we demonstrated that the micro-scale

turbulent kinematic viscosity, mtq, can be closed by employing
a mixing length assumption (compare with Eq. 5). Thus, the

shear viscosity resulting from the enhanced diffusion due to

the turbulent velocity fluctuations is directly connected to the
TKE, that is mtq5lmqk

1=2
q . In Figure 12 the normalized turbu-

lent kinematic viscosity is plotted as a function of the normal-
ized horizontal coordinate, x=W, for Geldart type A and B

particles. As demonstrated earlier the presence of solid bound-

aries is much more distinct for the type B particles due to the
larger cluster sizes. Close to the wall, mtq5lmqk

1=2
q vanshes due

to the damping of the wall-normal velocity fluctuations. How-

ever, in contrast to single phase flows mtq does not tend to zero
as d approaches zero, since the wall-tangential velocity fluctu-

ations are generally non-zero.41,42 Even though, we employ a
very simple isotropic closure for the turbulent viscosities of

both, the gas and the solid phase, our model predictions
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correlate well with the highly resolved simulations. Addition-
ally, Figures 13 and 14 show the turbulent kinematic viscosi-
ties as a function of the solids volume fraction in the core of
the channel and near the solid boundaries. As already delin-
eated in our previous study,1 mtq and kq (Figures 10 and 11)
scale with the square of the filter size, which is in accordance
to single phase turbulence. Generally, the kinematic viscosity
appears to be higher at low to intermediate volume fractions
and tends to zero as the volume fraction approaches maximum
packing conditions. The latter is evident, since at maximum
packing there is simply no room for turbulent fluctuations. For
a more detailed discussion on the specific features of mtq and kq

the reader is referred to Schneiderbauer.1

Finally, we have to discuss the variance of the filtered solids
volume fraction (VVF). Figures 15 and 16 show the VVF as a
function of the solids volume fraction in the core of the channel
as well as near the solid boundaries for Geldart type A and type
B particles. The figures unveil that the fluctuations of the solids
volume fraction do not show a considerable dependence on the

horizontal position, x=W, in the channel. In particular, /02

shows only a minor enlargement when approaching the wall. It
is, therefore, concluded that the increase of the drag reduction
detected in the vicinity of the solid boundaries is mainly coming

from the TKEs, since H /
ffiffiffiffiffiffiffi
/02

q
n/g

ffiffiffiffiffi
kg

p
2n/s

ffiffiffiffi
ks

p� �
(compare

with Eq. 3). However, the magnitude of the correlation coeffi-
cient n/g appears to be much larger than n/s, which is nearly

zero (compare with Table 1). This, in turn, implies that the addi-
tional drag reduction in the vicinity near wall is mainly steming
from the gas-phase TKE, which is particularly evident for the
Geldart type A particles (Figure 8a). It has to be further
highlighted that Eq. 6 is fairly consistent with the data stem-
ming from the highly resolved simulations.

In summary, we are able to draw the following picture of
turbulent structures in moderately dense gas–solid flow.44

Meso-scale shear and drag generate eddies of the gas and sol-
ids velocity with the size of approximately u2

t =g. These eddies
break up to smaller eddies; together with gradients in the sol-
ids volume fraction those smaller eddies trigger particle clus-
ters (Eq. 6), which are generally smaller than the large eddies.
Clusters and eddies further break up and transfer their energy
successively to smaller clusters and eddies until inter-particle
collisions get dominant at ðu2

t =gÞFr22=3.75 Here, these clusters
and eddies dissipate their TKE, which is consequently con-
verted into “molecular” fluctuations. The latter are character-
ized by the granular temperature.

Conclusions and Outlook

In this article, we have verified the constitutive relation for
the unresolved terms appearing in the SA-TFM model in the
vicinity of solid boundaries. Thereby, we employed an a priori
analysis by comparing the predictions of these constitutive
relations with highly resolved simulations of gas–solid chan-
nel flows. The main findings are

1. Consistent with previous work,23 we observe a consid-
erable increase of the drag reduction in the vicinity of solid
boundaries. Employing an averaged (filtered) linearized
micro-scopic drag force appears sufficient to capture this dif-
ferent cluster behavior near walls.

2. The TKEs and the turbulent viscosities are strongly
affected by the presence of the solid boundaries. While in the
channel core the algebraic constitutive relations for the TKEs
and the turbulent viscosities yield fairly good agreement with

the highly resolved simulations, in the vicinity of the walls

the mixing length has to be adapted according to Smagorinsky

sub-grid scale model,79 i.e., lmq5Cmqmin ðDf ; dÞ.
3. The components of the fluctuation velocity are highly

anisotropic near the wall, since the wall-normal components

of solid phase velocity fluctuations tend to zero, while the

wall-tangential components of solid phase velocity fluctua-

tions solely experience a damping due to particle-wall colli-

sions. Thus, in a coarse grid simulations this has to be

accounted for by setting the meso-scale pressure at the wall

to zero in wall-normal direction.
To sum up, the presented constitutive relations for the unre-

solved terms appearing in the SA-TFM approach are in fairly

good agreement with highly resolved simulations of wall dom-

inated channel flows. Future work should first concentrate on

withdrawing the assumption of isotropic turbulence. In con-

trast, the current constitutive relation should be generalized to

account for anisotropic conditions. Second, the applicability of

the SA-TFM approach in the case of dilute gas–particle flows

should bed be studied. Third, the simplifying assumptions of

the SA-TFM approach (i.e., dropping the filtered kinetic the-

ory stresses and the local-equilibrium hypothesis of the TKEs)

should be investigated more thoroughly. Especially, the

impact of the filtered kinetic theory stresses in a transient state

will be studied. Finally, the present model has not been vali-

dated against experimental data. The latter will be done in Part

II50 of this article.
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