
Verification and Validation of Spatially
Averaged Models for Fluidized Gas-Particle
Suspensions

Two different methods for closure modeling of the unresolved terms appearing in
the filtered two-fluid model are discussed and compared. The spatially averaged
two-fluid model is based on generalizing the concepts of large eddy simulation to
gas-particle flows. In the approximate deconvolution method-two-fluid model
approach, the unresolved terms are modeled by an approximate deconvolution
method, where an approximation of the unfiltered solution is obtained by re-
peated filtering. Finally, these models are applied to a lab-scale and a pilot-scale
fluidized bed. Both approaches yield fairly good agreement with a highly resolved
reference simulation as well as with experimental data. Additionally, both meth-
ods deliver reasonable grid-independent solutions up to a grid resolution of 2 cm
in the case of Geldart type A particles.
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1 Introduction

Fluidized beds are widely used in a variety of industrially
important processes. During the last decades, the analysis of
the hydrodynamics or the efficiency of fluidized beds through
numerical simulations has become increasingly common
[1–10], where the two-fluid model (TFM) approach has proven
to provide fairly good predictions of the hydrodynamics of gas-
solid flows [1].

However, due to computational limitations, a highly resolved
simulation of industrial-scale reactors is still unfeasible [11, 12].
Therefore, it is straightforward to apply coarse grids, which
allow a considerable reduction of the computational effort.
Nevertheless, such a procedure inevitably neglects the small
(unresolved) scales [13, 14]. Consequently, many sub-grid drag
modifications have been proposed to account for the effect of
these small mesoscale structures on the resolved macroscales
[2, 12, 15–21].

In this context, filtered two-fluid models (fTFMs) [12,
15–19, 22] as well as heterogeneity-based two-fluid models
[17, 20, 21, 23] have been developed. While the heterogeneity-
based sub-grid models, such as the energy minimization multi-
scale (EMMS) model [23, 24], make some specific assumptions
about the form of the unresolved clusters and streamers, the fil-
tered approach aims to find an appropriate constitutive rela-
tion for the unresolved terms appearing due to filtering of the
balance equations. Closure models are commonly deduced
from highly resolved simulations, either Euler-Euler or Euler-
Lagrange [25, 26], which are filtered using filters of different
sizes. Various markers, such as solids volume fraction and slip

velocity, are then employed to classify the sub-filter scale state
and averaged to obtain statistics of the filtered quantities.
Commonly, based on these markers, functional fits are pro-
vided that the fTFM can be applied in coarse-grid simulations
[12, 15–19, 22].

In previous studies [27–29], a different approach for deriving
constitutive relations for the unresolved terms appearing in
fTFM has been presented. On the one hand, a spatially aver-
aged two-fluid model (SA-TFM) was advanced, which is based
on the concepts of turbulence modeling [30]. For example, the
residual correlation for the filtered drag force can be expressed
by the covariance of the solid-phase volume fraction and gas-
phase velocity [31]. Thus, the filtered drag force can be com-
puted from the variance of the solid volume fraction and the
turbulent kinetic energy of the gas phase. Closure models for
these quantities have been derived from first principles
[27, 32].

On the other hand, an approximate deconvolution method
(ADM) [33, 34] for the large eddy simulation (LES) of turbu-
lent gas-solid suspensions has been presented recently [31].
With such an approach, an approximation of the unfiltered
solution is obtained by repeated filtering, allowing the determi-
nation of the unclosed terms of the filtered equations directly.
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The main advantage of such so-called structural models is their
purely mathematical nature without requiring physical
assumptions; thus, these are established with no a-priori
knowledge of the physics of the interactions between the
resolved and sub-grid scales (SGSs) [35].

In this paper, the SA-TFM and approximate deconvolution
method-two-fluid model (ADM-TFM) are discussed and
applied to two different fluidized beds. First, these coarse-grid
models are employed for a lab-scale fluidized bed of Geldart
type B particles. The results are analyzed with respect to time-
averaged solids volume fraction and Reynolds stress and subse-
quently compared with fine grid reference data [36]. Second,
the predictions of both turbulence models are applied to a
pilot-scale fluidized bed of Geldart type A particles [37] and
opposed to experimental data. The latter fluidized bed is oper-
ated in bubbling and turbulent regimes.

2 Filtered Two-Fluid Models

In this study, a standard TFM formulation is employed to dis-
cuss the application of spatially averaged models to moderately
dense gas-particle flows. It is started from the continuity and
momentum equations for the gas and solid phases [1, 6]:

¶ 1� fð Þ
¶t

þ ¶
¶xk

1� fð Þvkð Þ ¼ 0 (1)

¶ 1� fð Þvi

¶t
þ ¶

¶xk
1� fð Þvivkð Þ ¼

1
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¶xi
� ¶

¶xk
Sg;ik � b vi � uið Þ þ 1� fð Þrggi

� �
(2)

¶f
¶t
þ ¶

¶xk
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¶fui
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¶xk
fuiukð Þ ¼

1
rs
�f

¶p
¶xi
� ¶

¶xk
Skc
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� �
þ b vi � uið Þ þ frsgi

� � (4)

where f1) denotes the solids volume fraction, rq is the density
of the gas phase (q ≡ g) and the solid phase (q ≡ s), and vi and
ui are the ith component of the gas- and solid-phase velocities,
respectively. Furthermore, p is the gas-phase pressure, Sg,ik

denotes the viscous gas-phase stress, Skc
ik is the mesoscale

kinetic theory-based particle-phase stress, Sfr
ik is the frictional

stress, b means the mesoscale drag coefficient, and gi is the
standard acceleration due to gravity.

Constitutive models employed for the stress tensors can be
found in Tabs. 3 and 4 in the previous study [2]. The drag coef-
ficient b can be expressed by the particle relaxation time tp, i.e.,
b = frs/tp, where tp is given by the Wen and Yu model [38].

In the case of coarse grids, not all relevant flow features are
resolved by Eqs. (1)–(4). Thus, balance equations for the mac-
roscale flow can be found by applying a spatial filter operation
to these equations, which gives their filtered (discretized or
resolved) counterpart. The filtered complement of a continu-
ous space-time variable g(x,t) is given by:

�g x; tð Þ ¼ Gg (5)

where G denotes the filter operator defined by the convolution
of g(x,t) with a weighting function G(x,y,Dfi) satisfying
∫GdV = 1. Thus, �g x; tð Þ is determined by:

�g x; tð Þ ¼ G ? g x; tð Þ ¼
Z

G x;y; Dfið Þg x; tð Þ dVy (6)

where Dfi denotes the filter width and G ” G?ð Þ.
By applying Eq. (6) to the continuity and momentum equa-

tions, the fTFM equations [27–29, 31, 36] are obtained:
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where Favre averages were employed:

vih ig ¼
1� fð Þvi

1� �f
; uih is ¼

fui
�f

(11)

The Reynolds stress-like contribution stemming from the
convective terms reads:

Rg;ik ¼ 1� �fð Þrg vivkh ig � vih ig vkh ig
� �

(12)

Rs;ik ¼ �frs uiukh is � uih is ukh is
� �

(13)

dDg;ik denotes the rate-of-strain tensor of the gas phase eval-
uated from the filtered gas-phase velocity.

For the derivation of Eqs. (8) and (10) it has been assumed
that the unresolved part of the filter gas-phase pressure is negli-
gible [18, 27]. Furthermore, the contribution of the filtered
mesoscale molecular stress, Skc

ik , may be neglected in many
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moderately dense gas-solid flows, i.e., f < 0.5, at sufficiently
large filter sizes. A budget analysis [27] shows that for the grid
sizes employed here the molecular stress is insignificant com-
pared to the Reynolds stress-like contribution. Nevertheless,
the contribution from the frictional contacts Sfr

ik becomes sig-
nificant close to the maximum packing and is, therefore,
retained in Eq. (10).

It has to be noted that sub-grid effects of the frictional stress
are not included in this study, i.e., Sfr

ik » cSfr
ik, where cð Þ indicates

that Sfr
ik is evaluated from filtered quantities. Models for Sfr

ik
will be addressed in future publications.

Following previous studies [31, 36], a good approximation of
the filtered drag force is as follows:

b vi � uið Þ »
�frsbtp

vih ig � uih is þ ud;i

� �
(14)

where the drift velocity ud,i = Æviæs – Æviæg is introduced, which
requires additional modeling. Furthermore, btp is evaluated
from resolved quantities.

To sum up, to finally close the fTFM Eqs. (7)–(10), constitu-
tive relations for the Reynolds stress terms (Eqs. (12) and (13))
as well as for the drift velocity (Eq. (14)) have to be introduced.
These are discussed in the following.

2.1 Functional Closures (SA-TFM)

A closure model for the drift velocity can be found from rewrit-
ing its definition as follows [32, 39]:

ud;k ¼ vkh is � vkh ig ¼
fvk � �fvk
�f 1� �fð Þ (15)

Greek symbols, i.e., k, indicate that there is no summation
over identical indices. Following the previous studies
[27, 31, 32], the covariance fvk � �fvk can be approximated by
[31, 32]:

fvk � �fvk ¼ xgf;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kg;kf ¢2

q
(16)

with kg,k being the anisotropic components of the turbulent
kinetic energy of the gas phase kg,k = 0.5(Ævkvkæg – ÆvkægÆvkæg)
and xgf,k being the correlation coefficient between gas-phase
velocity vk and the solids volume fraction j. Furthermore, f ¢2

denotes the sub-grid variance of the solids volume fraction.
It has to be emphasized that Eq. (16) accounts for the aniso-

tropic nature of the drift velocity due to kg,k and xgf,k, which is
especially important in fluidized beds [22, 39]. kg,k can be
directly obtained from Eq. (56) in [27] by disregarding the
summation over the second index appearing in the shear
production term. Finally, it has been shown recently [27] that
the correlation coefficients xgf,k are approximately
xgf,k = –0.5sgn(vk – uk)(1 – f). This, in turn, implies that a
non-zero drift velocity yields a drag reduction.

The Reynolds stress contributions are given by [27]:

Rg;ik ¼ 2 1� �fð Þrg kg;idik � mg;t
dSg;ik

� �
(17)

Rs;ik ¼ 2�frs ks;idik � ms;t
dSs;ik

� �
(18)

where kq,i accounts for the anisotropic macroscale normal
stress. Nevertheless, here an isotropic model for the macroscale
viscosity mq,t is used since the anisotropy of the off-diagonal
components of Rq,ik appears less important than for the diago-
nal components [31], i.e., kq,i. It has to be emphasized that the
constitutive relations for kg,i, ks,i, mq,t, and f ¢2 have already been
discussed in detail previously and, thus, they are not considered
here but can be found in previous works [27, 28, 32].

2.2 Approximate Deconvolution Method
(ADM-TFM)

In contrast to the functional closure models, which are based
on both mathematical derivation and physical assumptions,
ADM allows a purely mathematical reconstruction of the unre-
solved contributions. Since the filtered momentum equations
(Eqs. (8) and (10)) were obtained by applying a low-pass filter
(Eq. (6)) to the macroscale balance equations (Eqs. (2) and (4)),
the unresolved terms may be reconstructed by an inverse filter
operation:

g ¼ G�1�g (19)

and, therefore, the filtered drag force and the Reynolds stress
contribution may be computed directly from the reconstructed
f, vi, and ui.

However, in most interesting cases, G is not invertible [34].
Higher-order reconstruction of G�1 can be achieved by the iter-
ative deconvolution method of van Cittert [40], where the
unfiltered quantities can be derived by a series of successive
filtering operations (G) applied to the filtered quantities with
[31, 36]:

g? ¼ Qv ? �g ¼
Xn

k¼0

I� Gð Þk�g (20)

In Eq. (20), I is the identity tensor and Qv is the approxima-
tion of the inverse filter G�1. The truncation order of the
expansion v determines the level of deconvolution [34]. Nu-
merically, it is more efficient to rewrite Eq. (20) as an iterative
expression [36]:

g? » g kþ1ð Þ ¼ gk þ �g � G g kð Þ
� �

(21)

For example, the closure model for the drift velocity
(Eq. (14)) consequently reads [36]:

ud;i » u?d;i ¼ v?i
	 


s � v?i
	 


g (22)

Approximations for the Reynolds stress contributions can be
found similarly [36]. In this paper, v = 2 is used, which is a
good compromise between accuracy and numerical efficiency
[36]. Finally, the rheology-based regularization proposed in
previous work [36] is applied to all ADM simulations. Regula-
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rization accounts for the sub-grid scales of the Reynolds stress
term, which are not recoverable by deconvolution.

3 Numerical Simulations

To evaluate the applicability of the sub-grid closure models
presented in Sects. 2.1 and 2.2 at different scales (lab scale and
pilot scale), the gas-solid fluidized beds of Geldart A and B par-
ticles were investigated. Similar to previous studies [17, 36, 41],
a simple case with a superficial vertical gas velocity,
Wg

in = 0.63 m s–1, was studied (Fig. 1a). The pilot-scale bub-
bling fluidized bed consisted of a cylinder with an inner diame-
ter of 0.267 m (Fig. 1b). This reactor was simulated for compar-
ison with detailed experimental data reported by Zhu et al.
[37]. The height of the reactor was 2.464 m with an added free-
board region expanding to a height of approximately 4.2 m.
The freeboard had an inner diameter of 0.667 m to stop exces-
sive particle entrainment out of the bed. The freeboard region
was included in the simulation domain to accurately account
for the large degree of bed expansion observed in some of the
simulations conducted. Gas was injected through a velocity
inlet on the bottom face of the reactor.

Different velocities were employed, namely, Wg
in = 0.4 m s–1

and 0.9 m s–1. Gas exited at the top of the reactor through a
pressure outlet at 0 Pa gauge pressure. In both cases, a no-slip
boundary condition was applied for the gas phase and a free
slip boundary condition for the solid phase at the side walls.
This is contrast to the previous study [29], where no-slip
boundary conditions were applied for both phases. Here, a free
slip condition for the solid phase inhibits the too high produc-
tion of ks near the wall due to high shear. The physical parame-
ters are given in Tab. 1.

The open-source CFD code OpenFOAM 6 [42] was employed
for numerical solution of the governing equations. Particularly,
the OpenFOAM solver twoPhaseEulerFoam was modified to

account for Eqs. (7)–(10). Time advancement is achieved by a
variable time-step procedure, where the time step is limited by a
maximum Courant number of 0.25. Pressure-velocity coupling
was based on the PIMPLE algorithm [43]. Similar to [11], the
SuperBee flux-limiter was used for all variable extrapolation.
These code modifications can be downloaded at [44].

4 Results and Discussion

A previous study [27] suggests that the grid resolution for
kinetic theory-based TFM should be in the order of the charac-
teristic length scale, Lch = (ut

2/g)Frp
–2/3, where Frp = ut

2/(gds) is
the particle-based Froude number. In particular, this length
scale is a good estimate for the size of the smallest clusters, i.e.,
where the energy of the clusters dissipates into ‘‘molecular’’
fluctuations. This grid size requirement has also been con-
firmed recently by other authors [11, 45]. For the group B par-
ticles used for the lab-scale fluidized bed, the characteristic
length scale is Lch = 1.3 mm = 8.55 ds, which is approximately
by a factor of 6–12 smaller than the grid spacings of the coarse
grid. For the group A particles employed in the pilot-scale flu-
idized bed, the characteristic length scale is 265mm, which is by
factor 40–80 smaller than the coarse grid spacing. A previous
study [17] indicates that for coarse grid spacings of about 8Lch,
the contribution stemming from the interparticle collisions is
insignificant compared to the ‘‘turbulent’’ Reynolds stress.

4.1 Lab-Scale Fluidized Bed

Fig. 2 displays the time-averaged axial profiles of the solids vol-
ume fraction and its corresponding variance obtained from
SA-TFM and ADM-TFM using different grid resolutions.
These profiles are further compared with fine grid reference
simulation. For more details about the fine grid simulations,
the reader is referred to [2, 36].

It is observed that applying either functional closures
(SA-TFM) or ADM to the unresolved terms in the filtered
momentum equations (Eqs. (8) and (10)) yields good agree-
ment with the fine grid reference simulation even though much
coarser grids were employed. Furthermore, both closure ap-
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Figure 1. Schematic drawings of (a) the lab-scale and (b) the pi-
lot-scale fluidized beds.

Table 1. Physical parameters.

Property Lab scale Pilot scale

Particle diameter ds [mm] 150 65

Particle density rs [kg m–3] 2500 1780

Gas density rg [kg m–3] 1.224 1.22

Gas viscosity mg [Pa s] 1.78 ·10–5 1.78 ·10–5

Initial bed height h0 [m] 0.5 1

Initial solids volume fraction f0 [–] 0.55 0.55

Maximum packing fmax [–] 0.6 0.6

Terminal settling velocity ut [m s–1] 0.96 0.2
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proaches do not unveil a considerable dependence on the grid
resolution for the grid sizes employed here, i.e., Df

coarse = 6Lch

to 12Lch. However, it has to be highlighted that in the case of
Df

coarse = 6Lch, neglecting the kinetic theory stresses may not be
appropriate, which is indicated by the slight deviation of the
profile of the time-averaged solids volume fraction in the case
of SA-TFM.

Fig. 2b depicts the vertical profile of the variance of the solids
volume fraction. In the case of the fine grid the variance is
computed as follows, f ¢2	 


t;r ¼ �f2
D E

t
� �fh i2t , where Æ£æt in-

dicates time-averaging. However, in the case of the coarse grid
simulation, a second unresolved contribution becomes effec-
tive, which can be either determined from the constitutive
model for f ¢2 in the case of SA-TFM or by deconvolution
f ¢2	 


t;ur ¼ f?
2

D E
t
� f?

2
D E2

t
in the case of ADM-TFM [36].

Here, the subscripts r and ur denote the resolved and unresolved
contributions to Æf¢2æt. Consequently, the total variance is given
by the sum of resolved and unresolved contributions.

Fig. 2b clearly reveals that both closure approaches are also
able to recover the variance of the solids volume fraction ap-
propriately, which is important for mixing as well as heat and
mass transfer. The profiles of Æf¢2æ give evidence of a pro-
nounced bubbling and clustering within the fluidized bed even
though using a coarse grid, which is also confirmed by compar-
ing snapshots of the spatial distribution of the solids volume
fraction (Fig. 3).

Figs. 2 and 3 demonstrate that in the case of coarse grids the
standard TFM considerably overpredicts the expansion of the
bed, i.e., TFM underestimates the mean solids concentration
with the fluidized bed. This is because TFM neglects the contri-
bution from the unresolved heterogeneous structures, which is
also generally agreed in literature [2, 16, 20, 21, 46]. Further-
more, since no constitutive relation accounts for f ¢2, Æf¢2æt,ur is
zero and this, in turn, implies that Æf¢2æt solely consists of the
resolved part Æf¢2æt,r. Thus, the variance of the solids volume
fraction is greatly undervalued as well. The snapshots in
Figs. 3i and 3j further support this observation showing much
smoother structures (i.e., less corrugated) than depicted in
Figs. 3a–3h.

Recent studies [31, 47, 48] demonstrated that in fluidized
gas-solid flows the macroscale solid stress, i.e., the Reynolds
stress-like contribution, Rs,ik, can be highly anisotropic. Cloete
et al. [47] suggested that employing isotropic closures for the
normal components of Rs,ik, i.e., for ks,i, may lead to an overes-
timation of the bed expansion due to the overprediction of the
horizontal stress (Rs,11 ≡ ks,1 and Rs,22 ≡ ks,2), which pushes the
solids away from the bounding walls. However, this theory has
not been thoroughly proven in coarse-grid simulations yet [47]
and, therefore, this will be addressed in future publications.

Fig. 4 demonstrates that both SA-TFM and ADM-TFM ap-
propriately predict macroscale stress in vertical direction. Fur-
thermore, the results indicated that the horizontal macroscale
stress is much smaller than the vertical component (not shown
here). Nevertheless, the SA-TFM approach slightly underpre-
dicts Rs,33 in the upper part of the bed, which might be attribut-
ed to the assumption of constant correlation coefficients [27].
However, in future work, it is intended to employ a dynamic
procedure following Germano and Lilly [49, 50], which may
considerably improve the predictions of the SA-TFM approach
due to locally adjusting the correlation coefficient xjg,k

(Eq. (16)) by test filtering [32].
Finally, the posteriori simulations using ADM-TFM have to

be further discussed. In particular, the filtering operator
(Eqs. (5) and (6)) divides the flow into so-called resolved and
sub-filter scale (SFS) motions [51]. When Eqs. (7)–(10) are
solved on a discrete grid, a discretization operator is applied to
the equations as well, which further divides the turbulent flow
field; these are the resolved SFS (RSFS) and unresolved SFS re-
gions, where the latter is commonly called sub-grid scale. How-
ever, ADM is solely able to recover the RSFS contribution,
while the SFS region is technically lost [31]. Thus, the contribu-
tion from the SGS region has to be modeled; this is commonly
called regularization [51].

To account for the energy dissipation within the SGS region,
an additional dissipative term on the right-hand side of
Eqs. (8) and (10) has to be added. A previous study [36] clearly
shows that employing an appropriate rheology model yields
such a dissipative contribution. Nevertheless, in the case of
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Figure 2. Vertical profiles of (a) the time-averaged normalized volume fraction, j/jmax, and (b) the normalized variance of the
solids volume fraction (D̂f ¼ Df=Lch).
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much coarser grids than used for the lab-scale problem, the
closure of the drift velocity (Eq. (22)), which appears in the
closure for the filtered drag term, requires additional regula-
rization as well. This will be discussed in the next section. In
contrast, functional models such as the SA-TFM approach
do not distinguish RSFS and SGS contributions. Constitutive
relations are supposed to cover both contributions appropri-
ately.

4.2 Pilot-Scale Fluidized Bed

As discussed above, the grid spacing used for the pilot-scale
case is a factor of about 40–80 coarser than the grid size
required for standard TFM. At such coarse grids, the SGS contri-
bution gets non-negligible and, thus, the drag term necessitates

regularization. A closure for the drag regularization can be found
from Eq. (15) by using a gradient hypothesis [52], that is:

uR
d;i ¼

mg;t

rg
�f 1� �fð Þ�

�f (23)

where a constitutive relation for the ‘‘turbulent’’ viscosity mg,t is
required. Following previous work [27], mg,t may be approxi-
mated by:

mg;t ¼ 1� �fð ÞrgC2
mgD2

f

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b ¶�f

¶xi

vih ig � uih is
� ���� ���
rg

�f2 1� �fð Þ
þ 2dSg;ik

dSg;ik

vuuut (24)

where Cmg » 0.4. Eq. (24) is quite similar to the Smagorinsky
model used for single-phase LES, but with an additional term
accounting for the production of turbulent kinetic energy due
to the interfacial work [32, 53].

In Fig. 5, the time-averaged axial pressure gradient for the
two different superficial gas velocities is depicted. Here, the
time-averaging was employed over 20 s of simulation time.
This time-averaging interval window was large enough to
obtain time-independent mean values. The figure clearly
reveals that employing kinetic theory-based (standard) TFM
considerably underestimates the axial pressure gradient as the
gas-solid drag force does not account for the unresolved het-
erogeneous structures [29, 54]. In contrast, the SA-TFM model
appropriately predicts the pressure gradient for both superficial
gas velocities even though the grid spacing is nearly two orders
of magnitude larger than the grid resolution required for TFM.
These results are also quite similar to the results obtained using
an earlier implementation of the SA-TFM approach based on
the commercial CFD solver FLUENT [29].

In the present study, all results are achieved based on an
OpenFOAM implementation. Furthermore, the ADM-TFM ap-
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Figure 3. Snapshots of the solids volume fraction at t = 5 s: (a) fine grid with a grid resolution of Df
fine = Lch = 8.55ds; (b) filtered fine grid

with 8Df
fine; (c) ADM-TFM with Df

coarse = 6Df
fine; (d) ADM-TFM with Df

coarse = 8Df
fine; (e) ADM-TFM with Df

coarse = 12Df
fine; (f) SA-TFM with

Df
coarse = 6Df

fine; (g) SA-TFM with Df
coarse = 8Df

fine; (h) ADM-TFM with Df
coarse = 12Df

fine; (i) TFM with Df
coarse = 8Df

fine; (j) TFM with Df
coarse = 12Df

fine.

Figure 4. Vertical profiles of the normalized time-averaged verti-
cal Reynolds stress of the solids phase, R33h i

.
rsu2

t D̂6=7
f

� �
, for

the different coarse grid cases.
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proach yields an even better estimate of the time-averaged pres-
sure gradient. However, additional regularization for the filtered
drag term is required. Neglecting the SGS contribution of the
drag force (Eq. (23)) reveals a much smaller pressure gradient
(dotted line in Fig. 5a). This, in turn, implies that at such coarse
grids the SGS contribution is much larger than the RSFS part.

Fig. 6 presents the time-averaged radial solids volume frac-
tion at z = 0.6 m. The figure reveals that in the case of bubbling,
i.e., Wg

in = 0.4 m s–1, the coarse grid models correctly predict
the radial profile of the solids volume fraction. This is observed
for both grid resolutions. Furthermore, the degree of the segre-
gation of the solid phase in the vessel is in fairly good agree-
ment with the experimental data. This is in contrast to the
previous study [27], where an isotropic simplification of the
SA-TFM approach was applied; in this case, the solid segrega-
tion is considerably overestimated.

It has to be further noted that the particular experimental
case with which the simulations are compared exhibited a large
degree of non-symmetry in the flow, even after 30 s of averag-
ing, due to a spiraling bubble motion in the bed [54]. This can

be seen from the three different time-averaged radial measure-
ments (R1, R2, and R3), where one of them differed signifi-
cantly from the others. This asymmetry shown in Fig. 6 could
not be accurately captured by the presented coarse grid
approaches. Since the spiraling bubble motion causing this
asymmetry is a fairly isolated phenomenon [54], a precise sim-
ulation match is therefore not pursued.

In the case of Wg
in = 0.9 m s–1, the radial profiles are sym-

metric and both coarse grid approaches are in good agreement
with the experimental data (Fig. 6). As already discussed along
with Fig. 5, the standard TFM considerably underestimates the
solids holdup for both superficial gas velocities.

Finally, Fig. 7 presents snapshots of the solids volume frac-
tion. The figure clearly unveils that the SA-TFM as well as the
ADM-TFM approach appear to be insensitive to the grid reso-
lution with respect to the pressure gradient and solids holdup
in the dense region of the bed. However, in the case of ADM-
TFM, minor discrepancies between 1- and 2-cm grids can be
observed in transition to the freeboard, which is much more
distinct for the 1-cm grid. However, due to grid-coarsening,
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a) b)

Figure 5. Time-averaged pressure gradient, Æ�pæt, as a function of the vertical coordinate, z, for the pilot-scale bubbling fluid-
ized bed: (a) Wg

in = 0.4 m s–1; (b) Wg
in = 0.9 m s–1. The standard TFM results are taken from Cloete et al. [54].

a) b)

Figure 6. Time-averaged solids volume fraction, ��fh it , as a function of the normalized radial coordinate, r/R, at z = 0.6 m for the
pilot-scale bubbling fluidized bed: (a) Wg

in = 0.4 m s–1; (b) Wg
in = 0.9 m s–1.
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detailed features of the bubbles are inevitably lost, which have
to be accounted for by the present closure modeling in the
framework of the fTFM.

The figure further indicates that even though both methods
yield quite similar time-averaged properties (Figs. 5 and 6), the
form of the bubbles becomes different. Especially in the case of
Df

coarse = 1 cm, much smaller bubbles are received from the
ADM-TFM method, while in the case of SA-TFM the fluidized
bed shows considerable slugging. This difference may be attrib-
uted to the underlying nature of both approaches. The idea of
ADM is to reconstruct sub-filter information from the resolved
field, whereas in the case of SA-TFM the sub-filter models in-
clude different physical assumptions. For example, constant
correlation coefficients are used to close sub-filter variances,
e.g., Eq. (16). Applying a dynamic adaption procedure may
considerably improve the local predictions of the SA-TFM
approach [32].

Finally, it has to be noted that for the present cases, ADM-
TFM and SA-TFM required about 20 % more computational
resources compared to standard kinetic theory-based TFM due
to the larger number of model equations at the same grid reso-
lution. However, since ADM-TFM and SA-TFM allow much
coarser grid resolutions, their computational demand is at least
three orders of magnitude lower than corresponding fine grid
simulations.

5 Conclusions

In this article, the previously presented SA-TFM [27, 32] and
ADM-TFM [31, 36] approaches were applied to different fluid-
ized-bed regimes, such as bubbling and turbulent, utilizing
group A and B particles. The SA-TFM approach is based on
the turbulent behavior of the heterogeneous gas-solid struc-

tures. These appear as additional sources for the turbulent
kinetic energies of both phases and for the sub-filter variance
of the solids volume fraction due to the interfacial work.
Those quantities, in turn, characterize the sub-grid heteroge-
neity and, therefore, the unresolved terms in the filtered bal-
ance equations can be determined. In the ADM-TFM method,
the unresolved terms are closed by an ADM. With such an
approach, an approximation of the unfiltered solution is ob-
tained by repeated filtering allowing the determination of the
RSFS contribution of unclosed terms of the filtered equations
directly.

The main findings are:
Neglecting the contribution of the unresolved terms fails to

predict the hydrodynamics of fluidized beds using a coarse
mesh.

Both approaches, SA-TFM and ADM-TFM, are able to pre-
dict the hydrodynamics of bubbling and turbulent fluidized
beds correction even in the case of very coarse meshes.

Furthermore, both approaches appear to be nearly insensi-
tive to the grid spacing up to 80 times the grid resolution
required for standard kinetic theory-based TFM.

However, in the case of the ADM-TFM method, additional
regularization of the drag term is required for very coarse
meshes, where the SGS contribution gets significant compared
to the RSFS part.

To conclude, this study indicates that the ADM-TFM
approach is more accurate than the SA-TFM method when rel-
atively fine grids can be afforded computationally. This can be
explained by the lower degree of modeling involved in ADM.
However, the accuracy of ADM-TFM decreases with increasing
grid resolution since ADM by itself does not account for the
SGS contribution. Thus, additional regularization methods for
the Reynolds stress and the unresolved part of the drag force
are required, which necessitates additional modeling, e.g.,
Eq. (25). Thus, the results of this study reveal that at coarser
grid resolutions the application of SA-TFM is preferable with
respect to accuracy and computational costs, while in the case
of ADM-TFM additional regularization decreases the numeri-
cal performance of the method.

However, several tasks remain. First, these methods have to
be further tested in the fast fluidization regime. Especially, the
regularization method for the filtered drag force should be
evaluated in more detail. Second, the performance and accu-
racy of these approaches have to be studied using non-orthogo-
nal and non-structured meshes as well. Finally, both approach-
es have to be augmented by heat and mass transfer, which is
inevitable for their industrial application. These issues will be
addressed in future studies.
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a) c)b) d)

Figure 7. Snapshots of the solids volume fraction at t = 20 s for
Wg

in = 0.4 m s–1; (a) SA-TFM, Df
coarse = 1 cm; SA-TFM, Df

coarse =
2 cm; (b) ADM-TFM, Df

coarse = 1 cm; ADM-TFM, Df
coarse = 2 cm.
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Symbols used

C [–] constant in turbulent closure models
ds [mm] particle diameter
Dg;ik [s–1] strain rate of gas phase
Frp [–] particle-based Froude number
gi [m s–2] standard acceleration of gravity
�g [–] filtered complement of a continuous

space-time variable g
G [m–3] weighting function
G [–] filter operator
h [m] bed height
I [–] identity tensor
k [m2 s–2] turbulent kinetic energy
lb [m] size of fluidized bed
L [mm] length scale
p [Pa] gas-phase pressure
�p [Pa] filtered gas-phase pressure
Qv [–] approximation of the inverse filter G–1

R [kg m2 s–2] Reynolds stress
r/R [–] normalized radial coordinate
S [s–1] deviatoric part of rate-of-deformation

tensor
t [s] time
u [m s–1] solid-phase velocity
ut [m s–1] terminal settling velocity
v [m s–1] gas-phase velocity
Vy [m3] infinitesimal integration volume
Wg

in [m s–1] superficial inflow gas velocity
x [m] horizontal coordinate
z [m] vertical coordinate

Greek letters

b [–] drag coefficient
d [–] Kronecker delta
Df [m] grid size
Dfi [m] filter width
m [Pa s] viscosity
x [–] correlation coefficient
r [kg m–3] density
tp [s] particle relaxation time
f [–] solid volume fraction
�f [–] filtered volume fraction
f ’ [–] volume fraction fluctuation
S [kg m2 s–2] molecular stress

Sub- and superscripts

0 initial
ch characteristic
d drift
fr frictional
g gas phase
i, j, k summation indices
kc kinetic
r resolved
s solid phase
ur unresolved
k index, where no summation is applied

Abbreviations

ADM approximate deconvolution method
EMMS energy minimization multiscale
fTFM filtered two-fluid model
LES large eddy simulation
RSFS resolved sub-filter scale
SA-TFM spatially averaged two-fluid model
SFS sub-filter scale
SGS sub-grid scale
TFM two-fluid model
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