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A B S T R A C T

This study presents an analysis of the turbulence–interface interactions during the sheet fragmentation process
based on the concept of enstrophy transport across the length scales. We carried out fully-resolved volume
of fluid (VOF) simulations of the decaying homogeneous isotropic turbulence (HIT) in the presence of an
initially flat sheet of interface and analyzed the spectral rates of enstrophy production/destruction due to
different mechanisms in the enstrophy transport equation. We highlight the scale-dependent nature of the
surface tension mechanism that interacts with the vortex stretching term and shapes the evolution of interfacial
turbulence. It is demonstrated that the spectral rate of surface tension term in enstrophy transport equation
changes sign at a characteristic length scale distinguishing between the nature of interfacial events: negative for
enstrophy-reducing fragmentation and positive for enstrophy-releasing surface minimization and coalescence.
We further show that at another characteristic length scale, the rate of enstrophy production by the surface
tension balances the disruptive mechanism of vortex stretching. This corresponds to a similar length scale that
the energy cascade of two-phase turbulence deviates from its single-phase similitude, and is also similar to
the length scale at which the size distribution of droplets distinctly changes to a sharper slope. The analysis
further discloses that increasing sheet Weber number by lowering the surface tension coefficient, increasing
density, and decreasing the viscosity of the sheet all enhance the vortex stretching effect across the scales and
dilate the spectral range at which the surface tension contribution is negative toward the smaller scales, and
thus facilitate the fragmentation. Whereas the higher surface tension coefficient, higher viscosity, and lower
density ratio expand the spectral range associated with a positive contribution of surface tension toward the
larger scales and suppress fragmentation events. This enstrophy-based description offers a new interpretation
of the range of maximum stable droplets in turbulence. Accordingly, an approximation is proposed and tested
for the Hinze scale in present configuration which could serve as the basis for future developments in DNS
and LES of two-phase flows.
1. Introduction

Atomization, liquid disintegration and emulsification are multi-
phase processes that recur in many real-life engineering applications.
When two coexisting immiscible fluids encounter instabilities, due to
the imbalance of disruptive and consolidating mechanisms, one fluid
element may fragment into many smaller ones (Villermaux, 2007).
Flow inertia, further intensified by turbulence, is known as a major
disruptive effect, whereas the surface tension at the fluid–fluid interface
is the major resistance to the fragmentation. Turbulent interfacial flows
are the common ground for such physical competition that results
in generation of interfacial structures such as droplets and bubbles.
Therefore, turbulence–interface interactions play the integral role in
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shaping the fragmentation characteristics, and control the droplet size
distribution of turbulent atomization and liquid emulsification.

The well-known limitations and complexities of the experimen-
tal characterization of turbulent interfacial flows make the numerical
simulation a prominent tool for investigation. Despite the progress
of computational power in turbulence research, the direct numerical
simulation (DNS) of multiphase flows is still a big challenge due to
excessive demands for grid resolution and conceptual dispute about the
required criterion for referring as fully-resolved simulations (Estivalezes
et al., 2022; Saeedipour et al., 2021). This explains why large eddy
simulation (LES) and coarse-grid multiscale methods have gained a
lot of attention for the simulation of atomization and emulsification
processes (Vincent et al., 2018; Saeedipour et al., 2019; Klein et al.,
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2019; Ling et al., 2015; Saeedipour et al., 2017). These methods share
the principal concept of subgrid-scale (SGS) modeling i.e. proposing
a model for small-scale, unresolved-by-grid physics applicable to the
range of scales below a cut-off length (grid resolution). Nevertheless,
the current state-of-the-art two-phase LES methods lack physical clo-
sure models for the unresolved surface tension and its interactions with
turbulence across the scales that influence interfacial events such as
breakup and coalescence (for more details on the shortcomings of the
two-phase LES models and their limitations, we refer to Klein et al.
(2019), Hasslberger et al. (2020) and Saeedipour and Schneiderbauer
(2019) and the references therein).

Thus, an in-depth physical understanding of turbulence–interface
interactions across the scales is required to develop more accurate
functional closure models. Recent studies have demonstrated that the
surface tension negatively contribute to the turbulence energy cascade
at larger scales of the spectrum, while it acts as the source for the
turbulent kinetic energy (TKE) at the smaller scales, and therefore, the
interfacial structures cause the turbulence energy cascade to deviate
from the classical single-phase turbulence (Saeedipour et al., 2019;
Schneiderbauer and Saeedipour, 2022; Crialesi-Esposito et al., 2022;
Saeedipour and Schneiderbauer, 2022). This scale-dependent nature of
modulations mandates the determination of some characteristic length
scales for the interfacial structures to set appropriate spatial resolutions
(Jofre et al., 2020) and assess the applicability of such closure models.

In the context of turbulence-driven fragmentation, a relevant char-
acteristic length-scale is the Hinze scale 𝑑𝐻 (Hinze, 1955), which
represents the maximum size of stable droplets generated in turbu-
lence. It is well-studied in the literature that interaction of droplets
in homogeneous isotropic turbulence (HIT) promote a fragmentation
cascade with existing power-law correlations for the size distribution of
sub- and super-Hinze droplets (Deane and Stokes, 2002). Recent DNS
studies of emulsification of droplets in non-decaying HIT could exhibit
these power-law correlations mostly for sub-Hinze droplets (Crialesi-
Esposito et al., 2022; Begemann et al., 2022). Nevertheless, the original
definition of 𝑑𝐻 contains a critical Weber number that might be case-
dependent and may limit its generality for different problems. This
motivates further exploration on this characteristic length scale which
is one of the objectives of the present study.

Recently, we have described the multiphase turbulence phenomena
based on the concept of vorticity transport and the evolution of vortical
energy across the scales i.e. enstrophy (Saeedipour and Schneiderbauer,
2022). We analyzed the spectral contribution of the rate of different
vorticity generation/destruction mechanisms and observed some criti-
cal length scales where the energy/enstrophy cascades of a multiphase
turbulent flow deviates from its single-phase ones. Our analysis reveals
that these critical length scales represent a characteristic size of eddies
for which the vortex stretching mechanism is unable to drive the
cascade further, and the eddy breakup events do not contribute to
the energy transfer at small scales. Following this enstrophy-based
description, we believe these critical length scales may correspond to
the size of stable droplets during the decaying isotropic turbulence. In
other words, they may represent the maximum size of droplets where
the enstrophy imbalance is always in favor of the surface tension, pre-
venting from further breakup. While this reminisces the very definition
of the Hinze scale, it is still subject to further quantitative evaluations.

In the present study, we investigate the turbulence–interface in-
teractions in a freely decaying HIT using fully-resolved volume of
fluid (VOF) simulations. The problem configuration is similar to our
previous research (Saeedipour and Schneiderbauer, 2021, 2022) that
allows to study the temporal evolution of the interfacial turbulence
from an initially-flat interface until the dispersed droplet-laden flow.
We base our analysis on spectral contribution of different mechanisms
in enstrophy transport. As an extension to the previous works, we also
account for the density and viscosity contrasts between the phases, to
find out how they influence the temporal and spectral characteristics
2

of the interfacial turbulence. The originality of the present study is v
twofold: (i) we describe the turbulence–interface interactions in in-
terfacial flows with complexities based on the concept of enstrophy
generation/destruction, and (ii) we identify and connect the critical
length scales of this enstrophy-based analysis to the statistics of the
dispersed two-phase flow. While the former enriches the understanding
of the underlying physics which is necessary to shape new functional
SGS models for two-phase LES, the latter could pave the path toward a
more deterministic interpretation for the Hinze scale.

This paper is structured as follows. In Section 2, we present the
governing equations, theoretical background, and principles required
to perform numerical simulations and carry out the analysis. Section 3
introduces the details of the numerical setup for the fully-resolved
simulations. The results of this enstrophy-based analysis are presented
in different steps within Section 4. The paper ends with the conclusions
in Section 5.

2. Theory and principles

2.1. Governing equations of the incompressible two-phase flow

The unsteady motion of an incompressible, immiscible, two-phase
flow can be described by the one-fluid formulation comprising the
continuity and Navier–Stokes equations together with an additional
transport equation for the interface capturing technique. This addi-
tional equation determines the interface between the phases by tracking
a phase indicator scalar field 𝛼, which, in VOF method, corresponds
o the volume ratio of primary phase to the whole computational cell
olume. This system of equations reads

⋅ 𝒖 = 0 (1)

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌 𝒖⊗ 𝒖) = −∇𝑝 + ∇ ⋅ 𝝉 + 𝜌𝒈 + 𝒇𝜎 (2)

𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼𝒖) = 0 (3)

where 𝒖 is the mixture velocity vector shared with both phases, 𝑝 is
he pressure, and 𝝉 = 𝜇[(∇𝒖) + (∇𝒖)𝑇 ] is the viscous stress tensor.
he material properties such as density and viscosity are determined
y 𝛼 based on a mixture assumption as 𝜌 = 𝛼𝜌1 + (1 − 𝛼)𝜌2 and
= 𝛼𝜇1+(1−𝛼)𝜇2. The gravitational acceleration vector is denoted by 𝒈,

nd the last term represents the surface tension force that is commonly
omputed by the Continuous Surface Force (CSF) method (Brackbill
t al., 1992), and reads 𝒇𝜎 = 𝜎𝜅𝒏̂𝛿𝑠. In this formulation 𝜎 is the surface
ension coefficient, 𝒏̂ = ∇𝛼

|∇𝛼| is the interface unit normal vector, and
nterface curvature is approximated by 𝜅 = −∇ ⋅ 𝒏̂. Also, 𝛿𝑠 ≡ |∇𝛼|

is the mathematical delta function that equals infinity at the interface
and zero elsewhere. In the context of finite volume CFD, the numerical
solution of this system of equations is supposed to resolve all the flow
scales when sufficiently-high grid resolutions and advanced algorithms
are employed.

2.2. Vorticity and enstrophy transport equations

In fluid dynamics, vorticity (𝝎 = ∇ × 𝒖) is a vector quantity
associated with rotational motions in fluid, and consequently could
serve as a physical descriptor of the dynamics of vortical structures
i.e. eddies in turbulence. Particularly, the hierarchical cascading pro-
cess in turbulence and the energy transfer across the length scales could
be described in accordance with the mechanisms involved in vorticity
transport phenomenon (McComb, 1992; Pope, 2000). The vorticity
transport equation is derived by taking the curl of Eq. (2).
𝐷𝝎
𝐷𝑡

= (𝝎 ⋅ ∇)𝒖 + 𝜈∇2𝝎

−
∇𝜌
𝜌2

× ∇ ⋅ 𝝉 +
∇𝜌
𝜌2

× ∇𝑝 + ∇ × (𝜎
𝜌
𝜅𝒏̂𝛿𝑠).

(4)

The first two terms on the right-hand side (RHS) of Eq. (4) are the
ortex stretching (𝑻 ) and viscous dissipation (𝑻 ) terms. Similar to
𝑉 𝑆 𝐷
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the single-phase turbulent flows, these mechanisms play essential roles
in cascading process. For incompressible multiphase flows, the other
three terms on the RHS of vorticity equation appear solely because of
the multiphase nature of the flow. The third term corresponds to the
vorticity destruction due to the misalignment of the density gradient
vector and viscous stresses, which is also known as viscous torque
(𝑻 𝑉 ). The fourth term is usually referred as the baroclinic torque (𝑻 𝐵)
that is the vorticity generation/destruction due to the misalignment
between the density gradient vector and pressure gradient. Finally, the
last term corresponds to the vorticity production/destruction by the
surface tension force at the interface region (𝑻 𝜎). Due to the alignment
of density and volume fraction gradients as well as given the fact that
the curl of a gradient of a scalar is zero, this term reduces to

𝑻 𝜎 = 𝜎
𝜌
∇𝜅 × ∇𝛼, (5)

which contains no density gradient (Hasslberger et al., 2018) and is
solely dependent on the interface geometry i.e. curvature and normal
vector. This implies that the geometrical changes in the interface
contribute to the vorticity generation close to the interface.

Enstrophy is the vorticity squared ( = 𝝎 ⋅ 𝝎) (Pope, 2000), and
epresents a scalar quantity that intrinsically reflects the strength of the
orticity field without a vector implication (Denaro, 2018). Therefore,
t could serve as a measure for the vortical energy of the turbulent
tructures. The enstrophy transport equation is derived by the dot
roduct of Eq. (4) with 𝝎. Nevertheless, we base our analysis on the
pectral distribution of the enstrophy. In the spectral space, the Fourier
ransform of the enstrophy equation for the two-phase flows reads
𝜕(𝜿)
𝜕𝑡

= 𝛹𝑉 𝑆 + 𝛹𝐷 + 𝛹𝑉 + 𝛹𝐵 + 𝛹𝜎 , (6)

here 𝛹 denotes the rate of the contribution of each vorticity transport
echanism to the enstrophy transported by the eddies across the
avenumbers 𝜿, and is computed by

𝑖(𝜿, 𝑡) =
∑

𝜿<|𝜿|<𝜿+1
𝝎̂(𝜿, 𝑡)◦𝑻̂ 𝑖(𝜿, 𝑡). (7)

Here, 𝑻 𝑖 corresponds to different terms on the right-hand-side
of Eq. (4), ‘‘ ̂ ’’ is the Fourier transform, and ‘‘ ◦ ’’ is the dot product
f two complex vectors. It has to be noted that 𝛹 has the physical unit
f [𝑇 −3] and represents the rate of enstrophy generation/destruction by
ach mechanism involved in vorticity transport equation, and therefore
s employed as the major descriptor of our analysis in this study.

.3. Characteristic scales in interfacial turbulence

From statistical viewpoint, the fragmentation process due to the
urbulence–interface interactions results in a wide range of droplet/
ubble sizes that, in the case of HIT, feature a characteristic size
ommonly referred as Hinze scale (𝑑𝐻 ). This length scale represents the
aximum size of stable droplets that are not subject to further breakup.
ased on the concept of critical Weber number (𝑊 𝑒 = 𝜌1𝑢2𝛿∕𝜎) and
sing the Kolmogorov theory, Hinze (1955) proposed the following
orrelation

𝐻 = (𝑊 𝑒𝑐𝑟∕2)3∕5(𝜌𝑐∕𝜎)−3∕5𝜀−2∕5 (8)

here 𝑊 𝑒𝑐𝑟 = 1.17 is applied to fit experimental data. This length scale
as been the basis for further characterization of probability density
unction (PDF) of droplets generated in HIT. The droplets smaller
han this size (i.e. sub-Hinze droplets with 𝑑 < 𝑑𝐻 ) are resistant to
ragmentation and may only be prone to coalescence. Their PDF follow
𝑑−3∕2 power law (Deane and Stokes, 2002), and their interaction
ith isotropic turbulence is interpreted as the source of TKE (Trontin
t al., 2010; Dodd and Ferrante, 2016; Saeedipour et al., 2021) due
o positive work of surface tension in surface minimization, and the
reation of small-scale vortical structures (Saeedipour and Schneider-
auer, 2022; Crialesi-Esposito et al., 2023). The droplets with 𝑑 ≥ 𝑑
3

𝐻

are subject to breakup, which is interpreted as the sink of TKE (Dodd
and Ferrante, 2016), and form a sharper slope of 𝑑−10∕3 in their size
distribution spectrum (Garrett et al., 2000). Various DNS studies of the
emulsification process in non-decaying HIT have demonstrated these
power laws for the PDF of generated droplets (Skartlien et al., 2013;
Crialesi-Esposito et al., 2022; Begemann et al., 2022). Nevertheless,
the original correlation for 𝑑𝐻 contains case-dependent critical Weber
number that needs turning, and relying on the power laws to find the
𝑑𝐻 may be uncertain as the PDF slope transition from −3∕2 to −10∕3
may only be observed in certain volume fractions (Crialesi-Esposito
et al., 2022). Thus, a more general definition for this characteristic
seems crucial, which in turn, requires a more in-depth picture of the
turbulence evolution across the length scales.

In multiphase turbulent flows, the turbulent kinetic energy follows
an intrinsically different cascade process compared to the single-phase
turbulence. A couple of previous studies in the literature have under-
lined this fact by numerical simulations of HIT problems in presence of
a flat interface sheet or multiple droplets (Li and Jaberi, 2009; Trontin
et al., 2010; McCaslin and Desjardins, 2014; Dodd and Ferrante, 2016;
Schneiderbauer and Saeedipour, 2022; Saeedipour and Schneiderbauer,
2022; Crialesi-Esposito et al., 2022). Despite using different ways of
interpretation, they all have drawn a similar conclusion implying that
the presence of interface leaves its footprints on the cascade through
the work done by the surface tension (Saeedipour and Schneiderbauer,
2019). As schematically depicted in Fig. 1(a), the difference between
the energy cascades in the presence and absence of the interfacial
structures is scale-dependent. At low wavenumbers, the large-scale
deformations and breakup of the interface extract the kinetic energy
from the two-fluid flow due to the surface tension. But at small scales,
this energy is given to the flow through the energy-releasing interfa-
cial processes like coalescence. Thus, the high-wavenumber motions
(i.e. 𝜅 > 𝜅𝑒) contain a higher amount of energy compared to the
same range in the single-phase cascade. The length scale associated
with the beginning of this positive deviation in cascade, 2𝜋∕𝜅𝑒, is
a characteristic length scale at which the interface breakup (sink of
energy) is prevented, and the surface tension work starts to become
a source of kinetic energy.

For better understanding the underlying physics, we have recently
explained this deviation in energy cascade using the vorticity transport
equation (Saeedipour and Schneiderbauer, 2022). We focused on the
vorticity generation at large- and small-scale motions and could demon-
strate that the energy damping effect at large-scale motions is attributed
to the negative rate of contribution of surface tension to the enstrophy
generation (𝛹𝜎 < 0), whereas at smaller scales, 𝛹𝜎 > 0 indicating
that the misalignment between the gradient of curvature and gradient
of volume fraction generates eddies that do not counteract the local
vorticity vector, so they positively contribute to enstrophy generation.
This is schematically illustrated in Fig. 1(b). This highlights the scale-
dependent nature of the surface tension mechanism that characterizes
the nature of interfacial events: 𝛹𝜎 < 0 implies enstrophy-reducing
fragmentation events, while 𝛹𝜎 > 0 represents enstrophy-releasing con-
solidating effect through the surface minimization and coalescence. The
wavenumber at which 𝛹𝜎 changes its sign is denoted by 𝜅𝑠, and could
be interpreted as a border between fragmenting and non-fragmenting
interfacial scales.

We further show that there is another characteristic wavenumber
larger than 𝜅𝑠, at which the already-positive 𝛹𝜎 start to become larger
than the rate of enstrophy generation by the vortex stretching mech-
anism (i.e. 𝛹𝜎 > 𝛹𝑉 𝑆 ). This wavenumber is denoted by 𝜅𝑐 , and as
an important conclusion we could demonstrate that 𝜅𝑐 ≅ 𝜅𝑒. In other
words, the energy pile up at large wavenumbers begins after the vortex
stretching rate becomes weaker compared to the rate of enstrophy pro-
duction by the surface tension mechanism, and the eddy breakup events
are less effective in generating smaller structures. Instead, the surface

tension becomes dominant and creates vortical structures through the
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Fig. 1. (a) Schematic form of the energy spectra of single-phase HIT (black) compared
ith the two-phase HIT (red). The single-phase HIT is referred to as 𝑊 𝑒 = ∞ similar

to Trontin et al. (2010), (b) schematic illustration of the trends in rate of enstrophy
transport by surface tension (𝛹𝜎 , colored in blue) and vortex stretching mechanism
(𝛹𝑉 𝑆 , colored in black) inspired from Saeedipour and Schneiderbauer (2022). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

act of surface minimization and/or coalescence. This important con-
clusion implies that turbulent structures smaller than 2𝜋∕𝜅𝑐 are mainly
produced by surface tension mechanism and increase the TKE. This
enstrophy-based description reminisces the definition of Hinze scale
which distinguishes between the fragmentation-dominated interfacial
structures from those stable ones that withstand the turbulent fragmen-
tation, and act as the source of energy/enstrophy. Therefore, seeking a
connection between these concepts seems a credible approach toward
a more accurate definition of the Hinze scale. Crialesi-Esposito et al.
(2023) have recently made such attempt by performing a series of DNS-
VOF simulations of emulsification in forced HIT. They compared the
spectral contribution of surface tension force to the TKE with the PDF
of the generated droplets, and could demonstrate that the change in
power law slopes from −3∕2 to −10∕3 occurs at a length scale associated
with 𝜅𝑠 in Fig. 1(b). It has to be noted that their criterion comes from
the evaluation of the energy equation in spectral space, and points out
the length scale where ∑

𝜅<|𝜅|<𝜅+1(𝒖̂(𝜿, 𝑡)◦𝒇̂𝜎 (𝜿, 𝑡)) → 0. But it can be
athematically shown that this matches the wavenumber where 𝛹𝜎 = 0

in Fig. 1(b). Despite the validity of this approach that ends up with a
reasonable range for the Hinze scale, the choice of 𝜅𝑠 may overlook the
following physical observations: (i) the positive deviation in cascades
starts around 𝜅𝑐 (Saeedipour and Schneiderbauer, 2022), and (ii) the
isruptive mechanism of vortex stretching may still be effective for
roplet breakup even at 𝜅 > 𝜅𝑠, in particular for liquid–liquid systems

with large density contrast.
Hence, we believe that the actual Hinze scale may lie within the

range of 𝜅 ≤ 2𝜋∕𝑑 ≤ 𝜅 , and as the lower limit, 𝜅 (associated
4

𝑠 𝐻 𝑐 𝑐
Fig. 2. Schematic of the simulation setup for the two-phase interfacial HIT problem.
The thin sheet of interface is located in the center of the box with 5% total volume
fraction. The surrounding walls are periodic in each direction.

with 𝛹𝜎 ≅ 𝛹𝑉 𝑆 ) could be a more relevant threshold for the stable
roplets needed for numerical modeling. In this study, we evaluate
his argument and analyze how 𝜅𝑠 and 𝜅𝑐 vary with the different flow

parameters.

3. Numerical simulation

To investigate the turbulence–interface interactions across the scales
and explore the characteristics of the fragmentation, we focus on
freely decaying homogeneous isotropic turbulence in the presence of an
initially-flat liquid sheet. We carried out fully-resolved numerical simu-
lation of a decaying HIT box similar to our previous studies (Saeedipour
and Schneiderbauer, 2021, 2022). This setup is identical to the DNS
study of Trontin et al. (2010) and comprises a fully-periodic square box
with the length of 𝐿𝐼 = 2𝜋 m initialized with a specific energy spectrum
hat, based on their grid dependency analysis, can be fully resolved
ith 𝑁 = 5123 number of uniform finite volume cells. A thin sheet of

nterface is placed in the center of the box with a thickness of 𝛿 = 𝐿𝐼∕20
as schematically illustrated in Fig. 2. This results in a interfacial HIT
with 5% total volume fraction. In the remainder of this paper, the sheet
and the surrounding fluid are referred to as the dispersed phase and
carrier phase, respectively.

A decaying homogeneous isotropic turbulence is generated in this
domain as a function of wavenumber (𝑘𝑎𝑝𝑝𝑎) with the initial energy
spectrum of

𝐸(𝜅) = 𝑅2

2𝐴𝜅𝛾+1𝑝

𝜅𝛾 exp

(

−
𝛾
2

(

𝜅
𝜅𝑝

)2
)

, (9)

where 𝜅𝑝 is the wavenumber at maximum 𝐸(𝜿). The constant param-
eters are all set similarly to Trontin et al. (2010) i.e. 𝑅2 = 3, 𝛾 = 4,
𝜅𝑝 = 9 and 𝐴 = 0.11. This initial turbulence entails a velocity scale of
𝑢′ = 1 m∕s and the Kolmogorov length scale (i.e. smallest resolvable
scale) of 𝜂 = 0.01312 m. The density and viscosity ratios between
the phases are equally set to one with the values of 𝜌1 = 𝜌2 = 1
kg/m3 and 𝜇1 = 𝜇2 = 0.003 Pa s. Accordingly, the initial Taylor-scale
Reynolds number of 𝑅𝑒 = 74 (where 𝑅𝑒 = 𝜌 𝑢′𝜆∕𝜇 ). The surface
𝜆 𝜆 1 1
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Table 1
Simulation cases of interfacial two-phase HIT considered in this study. The dimension-
less numbers are computed based on the dispersed phase properties and sheet thickness
(𝛿).

Cases 𝑟 = 𝜌1∕𝜌2 𝑚 = 𝜇1∕𝜇2 𝜎 𝑊 𝑒𝛿 𝑅𝑒𝛿
𝐶 − 1 (ref) 1 1 2.85 × 10−3 110 105
𝐶 − 2 1 1 4.98 × 10−3 63 105
𝐶 − 3 1 1 1.42 × 10−3 220 105
𝐶 − 4 0.1 1 2.85 × 10−3 11 10.5
𝐶 − 5 10 1 2.85 × 10−3 1100 1050
𝐶 − 6 1 0.1 2.85 × 10−3 110 1050
𝐶 − 7 1 0.01 2.85 × 10−3 110 10 500

tension coefficient 𝜎 is varied to account for different Weber numbers
𝑊 𝑒 = 𝜌1𝑢′2𝛿∕𝜎.

In this study, we first keep the density and viscosity values un-
changed and focus on the variation of 𝜎 that leads to three different 𝑊 𝑒
numbers of 63, 110, and 220. Since the primary objective of this study
is to assess the proposed enstrophy-based approach to the characteriza-
tion of the dispersed phase in decaying turbulence, the Weber numbers
are chosen relatively high to ensure that sheet fully fragments into
dispersed interfacial structures. Then, the intermediate Weber number
of 110 is picked as the reference case to study the variation of density
and viscosity between the phases separately. First, we only varied the
density ratio (𝑟 = 𝜌1∕𝜌2) and evaluated two cases with 𝑟 = 0.1 and
10. Note that the density contrast will induce differences in inertia
between the phases and could alter the homogeneity assumption of
the HIT flows. It also changes the kinematic viscosity and could vary
the turbulence intensity. Notwithstanding these limitations, we still
analyzed these cases but intentionally kept the density ratio low to
minimize such effects. Finally, we varied the viscosity ratio (𝑚 = 𝜇1∕𝜇2)
nd considered two cases with 𝑚 = 0.1 and 0.001. It has to be noted for
he aforementioned reasons, in this study we only intended for 𝑚 ≤ 1

because a test simulation (not presented here) disclosed that when the
viscosity of the sheet is high, it does not completely fragment and stays
as a highly-deformed and corrugated bulk fluid. Table 1 presents the
simulation cases with the relevant physical parameters.

The box is discretized with equidistant grids of 𝛥 = 𝐿𝐼∕512.
Numerical simulations were performed using the VOF solver of in-
erIsoFoam within the CFD software package of OpenFOAM. This

inite volume solver employs a PISO-based algorithm for pressure–
elocity coupling (Weller et al., 1998) and the geometric VOF method
f IsoAdvector (Roenby et al., 2016) for the interface capturing. The
onvective and diffusive terms in the momentum equation are dis-
retized by employing central differencing, while the convective term
n the VOF equation is discretized by using the vanLeer scheme. In the
ontext of IsoAdvector method, a plic-RDF scheme is employed for

the reconstruction of the interface from discretized 𝛼 (Scheufler and
Roenby, 2019; Gamet et al., 2020). We use adaptive time stepping to
advance the solution in time with a first-order Euler scheme, where the
time step size is limited by a maximum Courant number corresponding
to 1/50 of Kolmogorov time scale similar to Trontin et al. (2010). The
simulations were performed until 𝑡∕𝜏𝑒 = 22 where 𝜏𝑒 = 0.27 s is the eddy
urnover time based on the large scales of turbulence (Trontin et al.,
010). This is associated with the time that the kinetic energy decays
o almost zero. An in-house computational cluster with 128 processors
as employed in this simulation campaign. It has to be emphasized that

his setup has been the subject of our previous research with multiple
alidation studies. To avoid repetition, we refer to Saeedipour and
chneiderbauer (2021) for more details on the simulation setup and
alidations.

. Results and discussions

The analysis of the simulation results is presented in three different
ections based on the influences of surface tension coefficient (in the
5

orm of 𝑊 𝑒 number), density ratio, and viscosity ratios. f
.1. Influence of the surface tension coefficient

In the first three cases, we compare the characteristics of the decay-
ng turbulent interfacial flows with different interfacial tension between
he phases. Since 𝑊 𝑒 ∝ 𝜎−1, we refer to them by their Weber numbers.

Fig. 3(a) displays the normalized domain-averaged kinetic energy,
⟨⟩ = 1

 ∫
1
2𝜌‖𝐮‖

2d𝑣, for the cases 𝐶-1 to 𝐶-3 together with the single-
hase results. This pictures the decaying process of the present HIT
low which is globally similar for all the cases (even though we will
how later the differences due to the presence of the interface). The
igh energy input to the box develops an inertia-dominated regime,
nd ⟨⟩ decays monotonically with a steep rate until 𝑡∕𝜏𝑒 ≈ 6 where it
eaches the 10% of its initial value. Then, for 𝑡∕𝜏𝑒 ≥ 6 the decay rate
educes significantly until 𝑡∕𝜏𝑒 ≈ 22 where the remaining energy decays
o almost zero, and the flow is mainly dominated by the surface tension
ffects. These two regimes are schematically distinguished in Fig. 3(a).

As the high-order moment of the flow, the normalized domain-
veraged enstrophy, ⟨⟩ = 1

 ∫
1
2‖∇ × 𝐮‖2d𝑣, is plotted in Fig. 3(b).

nitially, the enstrophy increases in the domain until 𝑡∕𝜏𝑒 = 1 which
s attributed to the initialization of the HIT box and how the energy
preads to the high wavenumbers through a non-linear cascade (Yu
t al., 2005). After one eddy turn-over time, the enstrophy also starts to
ecay with a fast rate until 𝑡∕𝜏𝑒 ≈ 6, then similar to the kinetic energy,
t also yields a slower decay until the end of the simulation.

As the third macroscopic quantity, in Fig. 4 we plotted the domain-
ntegrated total interfacial area  = ∫𝑉 𝛿𝑠d𝑣, in which 𝛿𝑠 is the Dirac
elta function approximated by ‖∇𝛼‖ for each finite volume cell as
mployed in our previous works (Saeedipour et al., 2021; Saeedipour
nd Schneiderbauer, 2022). The temporal variation of this integral
uantity is strongly coupled with ⟨⟩ and ⟨⟩. The inertia-dominated
egime involves strong turbulence–interface interactions leading to
everal corrugations and irregularities at the interface which promotes
ragmentation. This results in a fast increase of the total interfacial area
or each case at different times before 𝑡∕𝜏𝑒 = 6. These interactions could
esult in more than 10 times larger interfacial area for the highest 𝑊 𝑒,
hich is an indication of interface fragmentation and the creation of a
ispersed phase. Afterward, when the energy decay rate reduces for 6 <
∕𝜏𝑒 < 22, the surface tension is globally dominant through the act of
urface minimization and rearranging the shape of dispersed interfacial
tructures toward spherical droplets. Therefore, for the surface tension-
ominated regime,  starts to reduce and converge toward a constant
alue that is still larger than the initial area of the flat interface.

Furthermore, the influence of surface tension coefficient can be
xplained by the difference between the interfacial area profile in
ach case. For the 𝐶-2 with largest 𝜎, the total interfacial area is
uch lower because of the stronger surface tension force between the
hases that counteracts instabilities and interface deformation. It also
eads to reaching the peak of  sooner and consequently, having a
lobally lower interfacial area compared to other cases. In contrast,
he sheet with smaller 𝜎 (𝐶-3) encounters more severe deformations
ollowed by stronger fragmentation which eventually results in a total
nterfacial area almost twice the 𝐶-2 at the end of simulation. This
s also reflected in Fig. 5 that shows the instantaneous snapshots of
he cases with 𝑊 𝑒 = 63, 110, and 220 for two different instants of
imes at t/tau = 1 and 6. While at the beginning of the simulations
nd during the inertia-dominated regime, all the cases demonstrate
ore or less similar patterns for interfacial structures, at the end of the

imulation the case with higher 𝑊 𝑒 is extensively fragmented (Fig. 5(f))
hereas the case with 𝑊 𝑒 = 63 displays a large number of spherical
roplets indicating the stronger surface tension force (Fig. 5(b)). This
ualitative observation indicates that the characteristic size of droplets
hould be larger as the Weber number decreases. Further evaluation of
he characteristic length scales will be the subject of next sections.

For a better understanding of the macroscopic trends, we present a
ore detailed analysis concerning the differences with the interface-
ree case (𝑊 𝑒 = ∞). For the given turbulence in the HIT box and
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Fig. 3. Normalized domain-averaged quantities of cases 𝐶-1 to 𝐶-3 together with the
single-phase HIT: (a) kinetic energy, and (b) enstrophy.

Fig. 4. Domain-integrated interfacial area for 𝐶-1 to 𝐶-3 normalized by the initial
interfacial area of the flat sheet.

the absence of density and viscosity contrasts, the presence of interface
globally damps the total kinetic energy compared to the interface-free
6

case with 𝑊 𝑒 = ∞. This is attributed to the amount of energy that
should be consumed from the given turbulence to fragment the sheet.
As also reported by Trontin et al. (2010), the temporal variation of the
kinetic energy for high Weber numbers of 63 and 110 (that end up
with highly fragmented droplets) remain always inferior to the single-
phase TKE. This also holds for the enstrophy. Zooming into different
sub-periods of Fig. 3(b) unveils that the domain-averaged enstrophy of
two-phase cases is mostly lower than the single-phase one, but with
different trends. During the inertia-dominated period (𝑡∕𝜏𝑒 < 6), the
lower We number consumes (damps) a greater portion of the given
enstrophy to overcome stronger surface bonding during sheet fragmen-
tation, and it has marginally the lowest enstrophy level compared to
other cases as shown in Fig. 6(a). During the surface tension-dominated
period; however, the trend is different and the case with the lowest
Weber number yields a greater enstrophy level (Fig. 6(b)). Because in
the lack of inertia, larger surface tension contributes more to enstro-
phy production via coalescence and surface minimization. However,
it never reaches the single-phase case because for the simulated times
the interface still stays dispersed. We will further analyze these inter-
actions in spectral space and benefit from the demarcation between
inertia-dominated and surface tension-dominated periods to describe
the nature of turbulence–interface interactions in the present decaying
HIT.

So far, the analysis of integral quantities discloses the
time-dependent nature of the turbulence–interface interactions for the
decaying HIT. Nevertheless, as discussed in the introduction, these
interactions are also scale-dependent and the turbulent interfacial
flow in the HIT box follows a cascade that results in a distribution
of flow and interfacial structures across the length scales. For the
remainder of our analysis, we mostly focus on the spectral analysis
of the interactions. Following the discussion in sub- Section 2.3, we
now analyze the contribution of different mechanisms to the enstrophy
generation/destruction and assess how they characterize the dispersed
interfacial flow.

For each of the cases 𝐶-1 to 𝐶-3, we compute the rates of enstrophy
production/destruction by the vortex stretching (𝛹𝑉 𝑆 ) and surface
tension (𝛹𝜎) terms in spectral space as appearing in Eq. (7). Fig. 7
displays these spectral contributions for two different times of 𝑡∕𝜏𝑒
= 3.7 and 11. These two instants of times are chosen to be within
the inertia-dominated and surface tension-dominated regimes of the
decaying HIT. The wavenumbers at which 𝛹𝑉 𝑆 ≅ 𝛹𝜎 , corresponding
to 𝜅𝑐 in Fig. 1, are also evaluated and plotted as the vertical dashed
lines. For both times, 𝛹𝑉 𝑆 is positive for most of wavenumbers, whereas
𝛹𝜎 is negative at low wavenumbers and becomes positive at higher
ones, which evidently (i) highlights the scale-dependent nature of the
surface tension contribution, and (ii) explains the lower magnitudes of
𝛹𝑉 𝑆 in multiphase cases compared with the single-phase one. Because
the surface tension counteracts the stretching-driven cascading process
for most of the large scales and decreases the rate of vortex stretching
compared to the interface-free case. In fact, the surface tension mis-
alignment term destructs the enstrophy at large scales, and thus the
negative 𝛹𝜎 is associated with the higher probability of fragmentation.
Whereas it enhances the enstrophy at smaller scales through the act of
surface minimization or when coalescence happens. Thus, the positive
𝛹𝜎 indicates the probability of such enstrophy-releasing interfacial
events. Fig. 7 demonstrates that larger 𝜎 expands the positive 𝛹𝜎 toward
the larger scales, which is interpreted as the dominance of coalescence
over a broader range of the intermediate scales. Similarly, for the case
with 𝑊 𝑒 = 220 (i.e. lowest 𝜎) the fragmentation is stronger and the en-
strophy production due to surface minimization remains limited to the
highest wavenumbers which, in turn, leads to the generation of smaller
droplets. It is also evident that the vortex stretching remains effective
on similar range of scales but slightly diminishes as 𝜎 increases. This
can be explained concerning the single-phase case which theoretically
represents 𝜎 = 0, and the stronger surface tension causes a higher
reduction in the vortex stretching rate as depicted in Fig. 7.
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Fig. 5. Instantaneous snapshots of interfacial structures for 𝐶-1 to 𝐶-3 at different times visualized by iso-surfaces of 𝛼 = 0.5.
As time elapses and the turbulence intensity decays, the interac-
tions between the mechanisms follow the same trend but shift toward
the lower wavenumbers. Also, the vortex stretching rate decreases
gradually and 𝛹𝜎 ≥ 0 for a broader range of length scales. From a
physical point of view, it represents an interfacial flow with temporally-
decreasing disruptive forces. Thus, the consolidating effect of surface
tension, which is reflected in its positive contribution rate to the
7

enstrophy, expands toward the left of the spectra, and consequently,
the breakup events become limited to the larger scales. This entails the
generation of larger stable droplets at 𝑡∕𝜏𝑒 = 11 compared to 𝑡∕𝜏𝑒 =

3.7. It has to be noted that the 𝛹 terms are multiplied by 𝜅2 for better
visibility, thus the relative trends, as well as the critical wavenumbers
remain intact.
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Fig. 6. Two sub-periods of the temporal variation of domain-averaged enstrophy: (a) inertia-dominated, and (b) surface tension-dominated regimes.
Fig. 7. The spectral rate of enstrophy transport by the vortex stretching term 𝛹𝑉 𝑆
(solid curves) and surface tension term 𝛹𝜎 (dashed curves) for cases 𝐶-1 to 𝐶-3 at two
instants of time. The values are normalized by the initial domain-averaged enstrophy
and multiplied by 𝜅2 for better visibility. The vertical dash-dotted lines indicate 𝜅𝑐 for
the case with the same color. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
8

As the main characteristic scales explained in sub- Section 2.3, we
track both 𝜅𝑐 and 𝜅𝑠 (associated with 𝛹𝜎 ≅ 0) with time. Fig. 8 presents
a comparison of these two wavenumbers during the simulation for all
the three cases. Their temporal variation is in accordance with the
aforementioned physical description: they decrease with time, and for
the higher 𝑊 𝑒, they yield larger values. As discussed earlier, these
two characteristic wavenumbers could represent a range for maximum
stable droplets. Fig. 8 reveals that at the initial stages of the HIT, the
|𝜅𝑐 − 𝜅𝑠| is very large, and as the turbulence intensity decreases with
time, they converge.

For better physical understanding of this range, it would be in-
structive to imagine a vortical structure (eddy) corresponding to an
arbitrary wavenumber between 𝜅𝑠 and 𝜅𝑐 which is transported within
an interfacial structure (droplet) of the same size. On the one hand, 𝛹𝜎
is positive, and therefore the act of surface minimization (that resists
droplet deformation) produces vorticity. On the other hand, still 𝛹𝑉 𝑆 >
𝛹𝜎 , and the eddy is being stretched, locally increases vorticity, and
counteracts surface tension. It infers that a critical range of wavenum-
bers exists (i.e. 𝜅𝑠 < 𝜅 < 𝜅𝑐) for which turbulent eddies may still be
able to deform and break the interfacial structures. As the turbulence
decays and the vortex stretching mechanism becomes globally lower,
this critical range becomes smaller until almost vanishes. Whereas for
𝜅 > 𝜅𝑐 (above the solid curves in Fig. 8), the vortex stretching is always
weaker than the rate of surface tension contribution, and the droplets
are physically stable. It makes 𝜅𝑐 a more plausible candidate to define
the Hinze scale with. Particularly, for non-decaying turbulence which
is more or less similar to the initial stages of decaying HIT, the large
|𝜅𝑐 − 𝜅𝑠| points out the probability of wide range of critically-stable
droplets.

To further explore the scale-dependent nature of interactions, we
analyze the turbulent energy spectrum and the role of the characteristic
length scales. To compute the energy spectra in isotropic turbulence,
we follow the mathematical formulation of the one-dimensional spec-
trum (Tennekes and Lumley, 1972; McComb, 1992) by averaging the
Fourier transform of correlation tensor 𝑖𝑖 over a series of spherical
shells of radius 𝜅 i.e. 1

2 ∯ 𝑖𝑖(𝜿) d𝑎 for a spherical shell with the area
of d𝑎. Therefore, the final form of energy spectrum is computed by
summing up over all the wavenumbers and reads

𝐸(𝜅) = 1
2

∑

𝜿<|𝜿|<𝜿+1
𝒖̂(𝜿, 𝑡)◦𝒖̂(𝜿, 𝑡), (10)

where the complex dot product is actually conducted by employing the
complex conjugate of the 𝒖̂(𝜿, 𝑡) in our post-processing algorithm.

Fig. 9 displays the energy spectra for each interfacial HIT in cases
𝐶-1 to 𝐶-3 together with single-phase spectra at the same time. It is
evident that the energy cascade of all the interfacial HITs deviates from
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Fig. 8. Temporal variation of the characteristic wavenumbers 𝜅𝑐 (solid lines), and 𝜅𝑠
(dotted lines) for cases 𝐶-1 to 𝐶-3.

the single-phase one at large wave numbers. As described before, by
increasing the surface tension coefficient, this deviation point shifts
to the smaller wavenumbers which is similar to the trend of 𝛹𝜎 in
Fig. 7. Moreover, the energy levels after the deviation increase with the
surface tension coefficient. In fact, for the 𝐶-2 (with the largest 𝜎), the
energy levels at small scales become the largest. This clearly underlines
the higher amount of energy production due to surface minimization
and/or coalescence at the small scales for the case with stronger surface
tension. Similar to 𝛹𝜎 , this description holds true when turbulence
decays, but the characteristic wavenumbers decrease with time. As also
reported in our previous work (Saeedipour and Schneiderbauer, 2022),
an identical behavior is also observed for enstrophy spectra computed
similarly (i.e. by employing the Fourier transform of the vorticity vector
in Eq. (10)); however, in this study to avoid repetition we only present
energy spectra as the more conventional spectrum in the context.

As an essential observation, it is evident that the deviations in
cascades occur at the same wavenumbers corresponding to 𝜅𝑐 that are
also plotted in Fig. 9. As evidently exhibited by inset plots, 𝜅𝑐 acts as
a transition border between the wavenumbers whose energy content is
lower than the single-phase spectrum, and those with higher energy.
It should be noted that the present configuration with the thin sheet
as the initial condition is subject to non-homogeneity in the direction
perpendicular to the sheet, and the energy spectra vary along with the
𝑦-direction as the interface propagates (Trontin et al., 2010). While
the described correlation between enstrophy rates and energy spectra
remains the same in all the distances from the center of the box, this
could pose questions on the exact values of the characteristic length
scales. The potential issues with such an initial condition for interfacial
HIT require a more detailed discussion, which will be provided later in
the conclusions.

It remains to find the footprint of 𝜅𝑐 in statistical quantities of
interfacial structures across the length scales and confirm its relevance
to defining the Hinze scale. A reasonable approach would be similar
to Crialesi-Esposito et al. (2023) which analyzes the size distribution
of droplets and demonstrate how scaling laws change across the PDF
of droplet sizes generated during the emulsion of droplets in a non-
decaying HIT. They observe the change in the slopes from −3∕2 to
−10∕3 around the estimated Hinze scale. However, this observation
may be difficult to make for all the HIT flows. A recent investigation
by Begemann et al. (2022) reports such limitation for emulsification
in non-decaying HIT. While they could observe the −3∕2 slope of the
small-scale droplets in their different cases, the sharper slope of −10∕3
was not generally discernible for multiple ones. It would be even more
difficult for the present unsteady decaying HIT. The global picture
9

Fig. 9. The kinetic energy spectra of cases 𝐶-1 to 𝐶-3 as well as the single-phase HIT
at different instants of time: (a) 𝑡∕𝜏𝑒 = 3.7, and (b) 𝑡∕𝜏𝑒 = 11. The vertical dashed
lines indicate 𝜅𝑐 for the case with the same color. The inset plots zoom in around the
deviation ranges in spectra compared to the single-phase problem. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

of the interfacial structures (including e.g. several highly-corrugated
ligaments) at the early stages of the problem challenges the reach of a
meaningful statistical analysis of the droplet sizes, as also evident from
the snapshots on the left column of Fig. 5. Besides, even after the inter-
facial structures become more dispersed, a fragmentation cascade with
the reported scaling laws may not form as the HIT decays continuously.

Given these limitations, we compute the instantaneous droplet size
distribution using the connected-component labeling concept. For each
instant of time, this approach searches through the entire 3D do-
main and detects individual isolated interfacial structures based on
the connected cells containing a threshold of volume fraction field. By
assigning an equivalent droplet diameter to each of them, the detected
structures are grouped in bins with a width equal to the grid size. A cut-
off size of 𝑑∕𝛥 = 3 is also applied to remove the uncertainty of detecting
non-physical droplets. This method is implemented as an OpenFOAM-
based post-processing tool that we have used in our previous works
(for more details we refer to Saeedipour and Schneiderbauer (2021)).
Fig. 10 displays the PDF of droplets for each case at 𝑡∕𝜏𝑒 = 11 (where the
droplets become dispersed). To be consistent with the previous plots,
the horizontal axis is shown by 2𝜋∕𝑑 which presents an equivalent
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wavenumber based on the droplet sizes. This allows plotting 𝜅𝑐 for
better comparison in each case. Two straight lines are fitted to the
data in each plot with positive slopes. It is evident that in all the
cases, the size distribution follows these straight lines and changes the
slope at a length scale associated with 𝜅𝑐 . Even though these slopes are
not similar to that reported for non-decaying HIT (i.e. they are case-
dependent and vary between 2.8 to 3.6 for the red ones, and 6.6 to 7.3
for the blue ones), the distinct change in the slopes from the gentler
to the sharper one is aligned with the definition of the Hinze scale
where a change in the interfacial breakup mechanisms occurs. In other
words, these instantaneous distributions of the droplets reveal a change
in fragmentation cascade and distinguish between stable droplets and
structures that are prone to break up.

In addition to the droplet size distributions, we investigate another
spectral quantity that could represents the statistics of interfacial struc-
tures. Inspired by a recent experimental study on the fragmentation of
gas–liquid flow (Zhang and Chanson, 2019), we compute the power
spectrum of the volume fraction scalar field. Similar to the energy spec-
trum, we follow the spherical-shell integration strategy, and since in
isotropic turbulence the auto-correlation function depends only on the
wavenumber (Tennekes and Lumley, 1972), the wavenumber spectrum
of the volume fraction field is computed by

𝑃𝛼(𝜅) =
∑

𝜿<|𝜿|<𝜿+1

{

𝛼̂⋆(𝜿, 𝑡) ⋅ 𝛼̂(𝜿, 𝑡)
}

, (11)

where {} represents the real part of the complex field and ‘‘ ⋆ ’’
denotes the complex conjugate of the Fourier transform.

Fig. 11 presents the wavenumber spectrum of volume fraction for
the cases 𝐶-1 to 𝐶-3. For all the cases the 𝑃𝛼(𝜅) is almost flat or
may increase at small and intermediate wavenumbers, and starts to
decay at certain high wavenumbers. The decay rate reveals a tendency
toward 𝜅−2 slope that is consistent with the observations in previous
works (McCaslin and Desjardins, 2014; Zhang and Chanson, 2019).
In an analogy with the turbulent energy cascade where the presence
of viscous effects imposes a sharp decay at small scale fluctuations,
the decay in 𝑃𝛼(𝜅) would physically correspond to the presence of
a suppressing mechanism against interface fluctuations i.e. deforma-
tions. In other words, for the wavenumbers at which the 𝑃𝛼(𝜅) decays,
the surface tension becomes dominant. It suppresses those interface
corrugations that could have led to droplet breakup, and prevents
enstrophy consumption due to severe deformations and breakup events.
This interpretation is aligned with the explanation of McCaslin and
Desjardins (2014) for the role of surface tension in spectral space.
Fig. 11 further displays the characteristic wavenumbers plotted by
vertical lines. For almost all the cases, 𝜅𝑐 lies at the beginning of the
decay with the 𝜅−2 slope, even though the decay rate may increase
at larger wavenumbers. This is more evident at later time as a more
dispersed droplet-laden flow is formed. Moreover, as the surface tension
coefficient increases, the decay starts at larger scales. Similar to the
trend of 𝛹𝜎 , as turbulence decays, the surface tension suppresses a
wider range of interface fluctuations and 𝑃𝛼(𝜅) starts to decay at lower
wavenumbers (Fig. 11(b)).

These two observations on the size distribution and volume fraction
spectra clearly connect the enstrophy transport to the statistics of
interfacial structures and confirms the role of 𝜅𝑐 in shaping the scale-
dependent trends in interfacial turbulence. Thus, in the remainder of
the analysis, we will mostly focus on this characteristic length scale
and evaluate how it varies with different parameters. Also, as the
applicability of the volume fraction spectrum may be limited for every
interfacial flow, for the next cases we only present the size distribution
of the droplets as the relevant statistical representation of the dispersed
flow.
10
Fig. 10. Size distribution of droplets at 𝑡∕𝜏𝑒 = 11 for different cases: (a) 𝐶-1, (b)
𝐶-2, and (c) 𝐶-3. The vertical dash-dotted lines show the computed 𝜅𝑐 for each case.
The blue and red dashed lines are fitted to track the change in the PDF slope. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 11. The wavenumber spectra of the volume fraction scalar field for 𝐶-1 to 𝐶-3 at
different instants of time: (a) 𝑡∕𝜏𝑒 = 3.7, and (b) 𝑡∕𝜏𝑒 = 11. The vertical dashed lines
indicate 𝜅𝑐 for the case with the same color. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

4.2. Influence of the density contrast

The density contrast between the phases influences both tempo-
ral and spectral characteristics of turbulence–interface interactions.
Fig. 12(a) presents the temporal variation of domain-averaged enstro-
phy for the cases 𝐶-4 and 𝐶-5 together with the reference case of
𝐶-1. Total domain-averaged enstrophy increases with the density of the
sheet, as the inertial effects in the system intensify vorticity production
at the beginning of the HIT. The decay rate is also more abrupt for
the case with the higher density. This enhancement is not limited to
enstrophy and the total interfacial area is also affected. Fig. 12(b)
displays the temporal evolution of  for the cases 𝐶-1, 𝐶-4, and 𝐶-5.
For 𝑟 = 10, the sheet is subject to the highest degree of fragmentation
between the investigated cases in this study and grows abruptly to
15 times the initial value during the inertia-dominated period of the
decaying HIT (i.e. 𝑡∕𝜏𝑒 ≤ 6). This highlights the role of density contrasts
on the interface deformation and breakup for given turbulence. By
opposite, the total interfacial area remains lower than the reference
case for the 𝑟 = 0.1. In other words, the reduction of density ratio
suppresses severe interface stretching and deformation initiated by
the turbulence, and in turn, results in a lower total interfacial area.
11
Fig. 12. Normalized domain-averaged quantities of cases 𝐶-4 and 𝐶-5 together with
the reference case 𝐶-1: (a) enstrophy, and (b) total interfacial area.

This trend is consistent with the recent findings of Mangani et al.
(2022) where the reduction of density ratio decreases the probability
of bearing high curvature during the interface deformation.

Fig. 13 compares instantaneous snapshots of the interfacial struc-
tures at 𝑡∕𝜏𝑒 = 3.7 and 11 for the cases 𝐶-4 and 𝐶-5. It confirms that
the initial energy transfer to the sheet for 𝑟 = 10 results in a fragmented
regime that remains highly dispersed until the last simulated time (𝑡∕𝜏𝑒
= 22). Therefore, it yields a much higher interfacial area than the
reference case. Similarly, for 𝑟 = 0.1, the surface tension-dominated
period shrinks the total interfacial area and results in a dispersed flow
with many smooth interfacial structures as visualized in Fig. 13(b).

We further evaluate the turbulence–interface interactions in spectral
space. Fig. 14 presents the rate of enstrophy generation/destruction by
the vortex stretching and surface tension misalignment terms. It is evi-
dent that increasing 𝑟 enhances 𝛹𝑉 𝑆 and dilates its spectral distribution
to a wider range of small scales. This higher inertia, for instance in
the case of 𝐶-5, keeps the surface tension rate negative for a wider
range of scales and restricts the positive 𝛹𝜎 within a short range of
high wavenumber motions. Therefore, 𝛹𝜎 ≅ 𝛹𝑉 𝑆 occurs at much higher
wavenumbers compared to 𝐶-4 and 𝐶-1; however, the surface tension
rate never exceeds the vortex stretching one as depicted in Fig. 14(a).
This infers a critical condition where the droplets may still be unstable,
or end up with sub-Kolmogorov droplets. However, further analysis



International Journal of Multiphase Flow 164 (2023) 104449M. Saeedipour
Fig. 13. Instantaneous snapshots of interfacial structures for 𝐶-4 (top row) and 𝐶-5 (bottom row) at different times visualized by iso-surfaces of 𝛼 = 0.5.
in this direction requires a more detailed statistical analysis on the
droplets that may be difficult for the present highly-unsteady decaying
HIT and therefore remains for future study. Decreasing density ratio
shifts the competition between vortex stretching and surface tension
in the opposite direction, and involves larger scales. As evident for
𝐶-4 with density ratio of 0.1, 𝛹𝜎 ≥ 0 for a wider range of spatial
scales and this, in turn, implies a lower probability of fragmentation
in entire spectral domain. This interpretation evidently explains the
appearance of large-scale corrugated structures at the early stages of
𝐶-4 and the massive generation of small droplets in 𝐶-5 at the same
time, as demonstrated in Fig. 13(a) and (c).

Over time, the vortex stretching rate gradually diminishes while 𝛹𝜎
grows for all the cases, and both mechanisms extend their scope of
impact toward the larger scales. Particularly for 𝛹𝜎 , this situation leads
to lower 𝜅𝑐 as shown in Fig. 14(b). As the most determinative role of
the density ratio in this enstrophy-based analysis it could be concluded
that by increasing 𝑟, the vortex stretching mechanism is enhanced and
broadened toward the smaller scales, while decreasing 𝑟 amplifies the
positive 𝛹𝜎 , and further extends it toward the larger scales. Therefore,
it can be interpreted that higher 𝑟 facilitates fragmentation, and lower 𝑟
enhances coalescence and surface minimization. This conclusion is also
confirmed by a comparison of the characteristic length scales. Fig. 15
displays the temporal variation of the characteristic wavenumbers for
cases 𝐶-1, 𝐶-4, and 𝐶-5. While 𝜅𝑐 and 𝜅𝑠 decrease with time as
expected, the case with the higher density ratio has the maximum 𝜅𝑐 ,
which indicates that the stable droplets are much smaller than other
12
two cases. The large difference between these two wavenumbers is
also maximum for the 𝑟 = 10, indicating a potential large range of
critically-stable droplets.

Finally, the size distribution of the droplets at 𝑡∕𝜏𝑒 = 11 for each
case is presented in Fig. 16. Similar to the previous PDF plots, straight
lines with positive slopes are fitted to each curve. It reveals that the
change in the slope toward a sharper one occurs at 𝜅𝑐 . Even though
the change is not as evident as Fig. 10, the difference in trends due to
the density ratio is evidently pictured. As the density ratio increases,
the probability of smaller droplets increases and change in the slope
of the PDF shifts toward the smaller droplets confirming that a larger
number of droplets are prone to break up due to the higher inertia in
the flow.

4.3. Influence of the viscosity contrast

It remains to investigate the influence of the viscosity ratio on the
temporal and spectral quantities. The domain-averaged enstrophy for
the cases with different viscosity ratios is plotted in Fig. 17(a). It shows
that decreasing the viscosity ratio (lowering the sheet viscosity) pro-
duces more enstrophy. Because this entails a globally lower resistance
against the evolution of turbulence during the initialization of the HIT
flow. However, for such a low volume fraction of the sheet, further
decreasing the viscosity could only marginally increase the enstrophy
generation. This is evident in a comparison of ⟨⟩ in cases 𝐶-6 and 𝐶-7.
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Fig. 14. The spectral rate of enstrophy transport by the vortex stretching term 𝛹𝑉 𝑆
(solid curves) and surface tension term 𝛹𝜎 (dashed curves) for cases 𝐶-4 and 𝐶-5
together with 𝐶-1 at two instants of time. The values are normalized by the initial
domain-averaged enstrophy and multiplied by 𝜅2 for better visibility. The vertical dash-
dotted lines indicate 𝜅𝑐 for the case with the same color. The black solid curves show
the single-phase results for better comparison. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Temporal variation of the characteristic wavenumbers 𝜅𝑐 (solid lines), and 𝜅𝑠
(dotted lines) for cases 𝐶-4 and 𝐶-5 together with the reference case of 𝐶-1.
13
Fig. 16. Size distribution of droplets at 𝑡∕𝜏𝑒 = 11 for different cases: (a) 𝐶-4 and (b)
𝐶-5. The vertical dash-dotted lines show the computed 𝜅𝑐 for each case. The blue and
red dashed lines are fitted to track the change in the PDF slope. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

In addition, the viscosity variation also influences the total in-
terfacial area. Fig. 17(b) presents the temporal evolution of  for
cases 𝐶-6 and 𝐶-7 as well as the reference case of 𝐶-1. During the
inertia-dominated regime of the decaying HIT, lower viscosity facili-
tates the deformation of the sheet and enhances fragmentation. This
consequently results in a higher interfacial area compared to the refer-
ence case. Similar to enstrophy, further decreasing the sheet viscosity
confirms the trend, but seems to have a marginal effect on this inte-
gral quantity because of the low volume fraction of 5%. As the HIT
decays and during the surface tension-dominated regime (for 𝑡∕𝜏𝑒 ≥
6), the total interfacial area decreases and becomes even lower than
the reference case with 𝑚 = 1. Because in the absence of inertia, the
fate of the dispersed regime is controlled by the viscous and surface
tension forces (reminding the concept of Capillary number). Therefore,
at equal density and surface tension coefficient, the lower viscosity
leads to a stronger consolidating impact of the surface tension, which
results in further surface minimization, and promotes coalescence. The
latter decreases the number of droplets and eventually results in a
lower interfacial area. Fig. 18 displays snapshots of the dispersed phases
for 𝐶-7 at the end of the simulation. A qualitative comparison with
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Fig. 17. Normalized domain-averaged quantities of cases 𝐶-6 and 𝐶-7 together with
the reference case 𝐶-1: (a) enstrophy, and (b) total interfacial area.

Fig. 5(c)–(d) confirms the generation finer structures at 𝑡∕𝜏𝑒 = 3.7 and
more spherical ones at 𝑡∕𝜏𝑒 = 22 due to the higher coalescence rate.
This explanation is also consistent with Dodd and Ferrante (2016) who
assessed the rate of coalescence in decaying HIT with viscosity ratio.

Similar to other parameters, the influence of viscosity contrast
can be more elaborated in spectral space. Fig. 19 presents the rate
of enstrophy transport by the vortex stretching and surface tension
mechanisms for cases 𝐶-1, 𝐶-6, and 𝐶-7 at two instants of time. At 𝑡∕𝜏𝑒
= 3.7, lower viscosity ratio increases 𝛹𝑉 𝑆 and extends its influence to
higher wavenumbers compared to the reference case. It underlines a
basic fact in the physics of turbulence: the lower the viscous effects
are the stronger the vortex stretching becomes. Therefore, the vortex
could uphold the stretching–pinching events for much smaller eddies.
Therefore, similarly to what we observed with increasing the density
ratio, lowering 𝑚 promotes fragmentation by expanding negative 𝛹𝜎
territory toward the higher wavenumbers, and limiting positive 𝛹𝜎 to
a much shorter range compared to the reference case. Consequently,
both 𝜅𝑐 and 𝜅𝑠 increase as viscosity decreases.

As time elapses, the nature of interactions remains the same but
shifts to the lower wavenumbers as shown in Fig. 19(b). The vortex
stretching is effective on the intermediate scales and becomes slightly
higher for lower viscosity ratios. Also, the difference between 𝑚 =
0.1 and 0.01 diminishes over time and their 𝛹 profiles more or less
14

𝜎

converge and reveal similar characteristic wavenumbers. Nevertheless,
at small scales, the maximum 𝛹𝜎 is still greater for 𝑚 = 0.01. This
evidently confirms the higher rate of coalescence for smaller droplets
at lower viscosity which is also reflected in the total interfacial area (in
Fig. 17(b)).

Fig. 20 demonstrates the temporal variation of 𝜅𝑐 and 𝜅𝑠. These
characteristic wavenumbers increase by lowering the viscosity. Never-
theless, as the surface tension coefficient is equal for all three cases, at
the end of the decay the size of the maximum stable droplets converges
to a similar value, and for the lowest viscosity ratio, the maximum
size could be even larger than the reference case 𝐶-1 because of the
enhanced coalescence rate. This is also consistent with the results of
Dodd and Ferrante (2016) for the end of decaying HIT.

For the sake of completeness, we also present the statistics of inter-
facial structures. Fig. 21 presents the size distribution of the droplets at
𝑡∕𝜏𝑒 = 11 for cases 𝐶-6 and 𝐶-7. As expected, both PDF profiles show
a very similar trend and the change in the slope occurs at the same
scale for both cases. This is consistent with the overall picture of the
viscosity difference in the current study and similar 𝜅𝑐 for both cases
most of the time.

4.4. Approximation of the Hinze scale from the simulations

The reliance of the Hinze scale correlation on adjustable constant
parameters motivates further derivations toward a more general form
for the size of maximum stable droplets. The findings of the present
analysis underline the role of two characteristic wavenumbers 𝜅𝑐 and
𝜅𝑠 in describing the trends of physical interactions in interfacial tur-
bulence, and as mentioned in sub- Section 2.3, we believe 𝜅𝑐 could
serve as the basis for development. We start with the physical definition
of the stable droplet in turbulence, we follow the approach suggested
by McCaslin and Desjardins (2014) assuming the simple idea that
surface tension resists the deformations induced by turbulence eddies.
If the surface tension is sufficiently strong, the eddy of size  with
characteristic velocity scale of 𝑢 stops overturning the interface, and
an energy balance could be established between surface tension and
inertia, which reads

𝜌𝑢2
3 ≈ 𝜎2. (12)

This energy balance reminisces the concept of the critical Weber num-
ber of unity, which is applicable in the context of droplet breakup. But
an estimate of  is sensitive to the choice 𝑢, which in turn depends on
where this characteristic length scale falls within the universal equilib-
rium range (McCaslin and Desjardins, 2014). For the eddy within the
inertial sub-range of turbulence, 𝑢 ∼ (𝜀)1∕3, and for the dissipation
range 𝑢 ∼ (𝜀𝜈)1∕4, where 𝜀 and 𝜈 are the dissipation rate and kinematic
viscosity, respectively (Pope, 2000). Employing the former into Eq. (12)
results in a length scale proportional to 𝜀−2∕5, as appears in Eq. (8).
Nevertheless, the trend of characteristic length scales in this study
suggests that the stable droplet should be larger than the Kolmogorov
length scale, but not too large to lie within the inertial sub-range. In
addition, for such a decaying HIT configuration with relatively low
Reynolds number, the inertial sub-range may not form. Therefore, we
employ a velocity scale associated to the Taylor microscale (𝜆) which
is 𝑢2 = 𝜀𝜆2∕15𝜈 (Pope, 2000). This scale is pertinent in the context of
atomization and has been adopted before to describe droplet formation
by turbulent eddies (Saeedipour et al., 2016). By assuming  ∼ 𝜆
and rearranging Eq. (12), the characteristic length scale for the largest
stable droplets reads

 =
(

15𝜎𝜈
𝜌

)1∕3
𝜀−1∕3 (13)

This correlation is similar to one of those presented in McCaslin and
Desjardins (2014), and the only difference is that we adopt the Taylor
microscale into the energy balance. We evaluate this correlation for all
the investigated cases, and compared it with the original correlation
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Fig. 18. Instantaneous snapshots of interfacial structures for 𝐶-7 (with the minimum sheet viscosity) at different times visualized by iso-surfaces of 𝛼 = 0.5.
Fig. 19. The spectral rate of enstrophy transport by the vortex stretching term 𝛹𝑉 𝑆
(solid curves) and surface tension term 𝛹𝜎 (dashed curves) for cases 𝐶-6 and 𝐶-7
together with 𝐶-1 at two instants of time. The values are normalized by the initial
domain-averaged enstrophy and multiplied by 𝜅2 for better visibility. The vertical dash-
dotted lines indicate 𝜅𝑐 for the case with the same color. The black solid curves show
the single-phase results for better comparison. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. Temporal variation of the characteristic wavenumbers 𝜅𝑐 (solid lines), and 𝜅𝑠
(dotted lines) for cases 𝐶-6 and 𝐶-7 together with the reference case of 𝐶-1.

for the Hinze scale (Eq. (8) with 𝑊 𝑒𝑐𝑟 = 1.17) as well as the length
scales associated with the two characteristic wavenumbers presented
this work i.e. 2𝜋∕𝜅𝑐 and 2𝜋∕𝜅𝑠.

Figs. 22 to 24 compare these values for the cases 𝐶-1 to 𝐶-7
separately. It is evident that the proposed correlation based on the
Taylor micro-scale perfectly matches the length scale associated with
𝜅𝑐 for most of the cases in the present setup. This, in turn, confirms
that 2𝜋∕𝜅𝑐 is a correct estimation of the maximum size of stable droplets
which is associated with the eddies of the size of the Taylor micro-scale,
whereas 2𝜋∕𝜅𝑠 is larger and could act the upper limit for this range. In
addition, the original correlation for the Hinze scale results in much
smaller values which could be attributed to the different exponent of
the dissipation rate in Eq. (8) compared to the proposed correlation.

Nevertheless, for the case 𝐶-5 with the higher density ratio pre-
sented in Fig. 23(b), the proposed correlation, despite predicting the
correct range and trend, overestimates the characteristic length scale
associated with 𝜅𝑐 , and is closer to 2𝜋∕𝜅𝑠. Given the fact that it also
slightly underestimates 2𝜋∕𝜅𝑐 for the 𝐶-4, such a discrepancy might
originate in the altered homogeneity of the flow due to the density
contrast. This lack of homogeneity could affect the parameters involved
in the simple energy balance presented in Eq. (12) i.e. 𝜌 is not a
uniform field and the selected 𝑢 may also be affected. It has to be
further noted that while the approach toward proposing this correlation
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Fig. 21. Size distribution of droplets at 𝑡∕𝜏𝑒 = 11 for different cases: (a) 𝐶-6 and (b)
𝐶-7. The vertical dash-dotted lines show the computed 𝜅𝑐 for each case. The blue and
red dashed lines are fitted to track the change in the PDF slope. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

seems general, the choice of characteristic velocity scale remains case-
dependent. For the present decaying HIT configuration, the choice of
Taylor microscale close to the dissipation range proves to be a valid
assumption. Nevertheless, extending this assumption to non-decaying
HITs at higher Reynolds numbers may be questionable, and requires
further investigation. Therefore, future work will focus on improvement
of this correlation concerning other HIT configurations similar to, for
instance, the non-decaying HIT presented in Begemann et al. (2022).

5. Conclusions

In this study, the turbulence–interface interactions during the frag-
mentation of a sheet in a freely decaying interfacial HIT are analyzed
and interpreted based on the concept of enstrophy transport. Using
the fully-resolved volume of fluid simulation of two-phase isotropic
turbulence, this approach reveals a clear picture of the scale-dependent
role of the surface tension mechanism in energy/enstrophy transport
and characterizes the evolution of interfacial turbulence based on its
interaction with the vortex stretching mechanism. As an extension
to the previous works, we also account for the density and viscosity
16
Fig. 22. The characteristic length scale of the largest stable droplets for 𝐶-1 to 𝐶-
3 over time normalized by the Kolmogorov length scale. The red markers denote the
proposed correlation. The solid and dashed black curves indicate length scale associated
with 𝜅𝑐 and 𝜅𝑠, respectively. The gray curve is the original Hinze correlation. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

contrasts between the phases as well as the variation of surface tension
coefficient. This allows to figure out how they influence the spectral
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Fig. 23. The characteristic length scale of the largest stable droplets for 𝐶-4 and 𝐶-
over time normalized by the Kolmogorov length scale. The red markers denote the

roposed correlation. The solid and dashed black curves indicate length scale associated
ith 𝜅𝑐 and 𝜅𝑠, respectively. The gray curve is the original Hinze correlation. (For

nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

nd integral trends of individual mechanisms, and eventually shape the
ispersed multiphase system.

First, it is demonstrated that the spectral rate of surface tension term
as dual contributions to enstrophy transport across the scales. It is
egative for larger scales in the wavenumber spectrum and becomes
ositive for the small scales. Then, two characteristic wavenumbers
re identified: (i) a transition wavenumber (𝜅𝑠) at which the surface

tension contribution changes the sign from negative to positive, and
(ii) a wavenumber (𝜅𝑐) at which the already-positive surface tension
rate balances the spectral rate of vortex stretching mechanism. While
the former, from a physical point of view, serves at the border be-
tween enstrophy-reducing interfacial events (breakup) and enstrophy-
generating ones (surface minimization/coalescence), the latter scale
corresponds to a similar length scale that the energy cascade of two-
phase turbulence deviates from its single-phase similitude. We further
connect this characteristic length scale to the statistics of the interfacial
structures and observe that the size distribution of droplets changes
slope at a similar scale.

The simulation cases are categorized into three groups to investigate
the effect of Weber number, density ratio, and viscosity ratio separately.
For each group, we analyzed the temporal variation of integral quan-
tities such as domain-averaged enstrophy and total interfacial area.
17
Fig. 24. The characteristic length scale of the largest stable droplets for 𝐶-6 and 𝐶-
7 over time normalized by the Kolmogorov length scale. The red markers denote the
proposed correlation. The solid and dashed black curves indicate length scale associated
with 𝜅𝑐 and 𝜅𝑠, respectively. The gray curve is the original Hinze correlation. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Then, we explore the trends in spectral space. The analysis discloses
that increasing sheet Weber number by lowering the surface tension
coefficient, increasing density, and decreasing the viscosity of the sheet
all enhance the vortex stretching effect across the scales and dilate
the spectral range at which the surface tension contribution is nega-
tive toward the smaller scales, and thus facilitate the fragmentation.
Whereas the higher surface tension coefficient, higher viscosity, and
lower density ratio expand the spectral range associated with the
positive contribution of surface tension toward the larger scales, and
suppress fragmentation events. These trends are also consistent with
different works in the existing literature. We also examined the tem-
poral variation of the aforementioned characteristic length scales for
each group, and show that for the present decaying HIT they eventually
converge. Nevertheless, at the early stages of the flow, they yield a
large difference, indicating the probability of generating semi-stable
droplets. Then, we argue that for this decaying HIT problem the Hinze
scale should correspond to a range between 2𝜋∕𝜅𝑐 and 2𝜋∕𝜅𝑠, as the
turbulent breakup is stopped for droplets smaller than this range. Based
on this new interpretation, and using the concept of Taylor micro-scale
and energy balance for small-scale motions, a correlation is derived
for the largest stable droplets needless to any tuning parameter. The
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results match the 2𝜋∕𝜅𝑐 for most of the cases confirming its relevance
o representing the Hinze scale in numerical simulations.

As another essential conclusion, we should emphasize the choice of
roper interfacial HIT configuration for future research. The present
tudy has employed a HIT configuration consisting of a thin sheet
laced in the middle of the box that is chosen to be consistent with the
revious works in the literature (Trontin et al., 2010; Saeedipour and
chneiderbauer, 2021). But it brings advantages and disadvantages. For
nstance, the sheet is initially at rest and the fragmentation starts from

realistic condition with no initial influence of the surface tension
ompared to a setup with dispersed spherical droplets. Nevertheless,
s a disadvantage, such an initial condition poses questions about
he homogeneity assumption. In fact, as the interface propagates in
erpendicular direction to the sheet, the energy spectra vary depending
n the distance to the center of the box. We have analyzed the 2D
nergy spectra as well as spectral enstrophy rates on different planes
n the 𝑦-direction (not presented here), and have observed a similar
rend for 𝜅𝑐 at each 2D plane. It could be observed that the interface
ropagation in the 𝑦-direction still follows the general physics that
s disclosed about the turbulence–interface interactions; however, the
light variation in characteristic wavenumbers in each 2D plane in the
-direction compared to the other two homogeneous directions could
ose uncertainly on the exact values that contribute to the calculation
f 𝜅𝑐 by 3D shell-averaged spectral analysis. The uncertainty quan-
ification of such effect, however, requires a more thorough analysis
hich was not in the scope of the present study and remains for future
orks. Besides, a more homogeneous initial condition for the interface

imilar to recent works of Crialesi-Esposito et al. (2022) and Begemann
t al. (2022) i.e. comprising a distribution of multiple large drops at the
eginning could prevent such uncertainty when performing 3D shell-
veraged spectral analysis, and enables computation of unambiguous
haracteristic wavenumbers.

The findings of the present study stimulate future research in two
ossible directions of physics and modeling: (i) further evaluation of
his enstrophy-based approach and the connection to the size distri-
ution of droplets in a more statistically-steady setup such as non-
ecaying HIT with an initial condition that preserves the homogeneity
f interface propagation. Here, focusing on the interfacial events within
he range of 𝜅𝑠 to 𝜅𝑐 , and the stability of droplets could be a valid
irection for the future research. Also, the role of other terms in the
nstrophy equation e.g. the baroclinic torque during the evolution of in-
erfacial turbulence with density contrast may be more investigated. (ii)
mproving the proposed correlation for the Hinze scale, and developing
ew functional SGS models for surface tension force in the context
f two-phase LES based on the enstrophy transport equation. For the
ormer, a non-decaying HIT configuration could be more pertinent,
hile for the latter, the present fully-resolved simulations could serve
s the basis for a-priori tests of the new models.
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