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1. Introduction

The monitoring of blast furnace raceways can be tackled 
by either analyzing available plant data like pressure or flow 
rate data or by attaching cameras to the inspection glasses at 
the end of the blow pipes. Visual raceway monitoring is not 
new, but the rapid development of camera technology over 
the past two decades has opened new possibilities and the 
constantly decreasing prices of camera hardware now allow 
a complete camera equipment for all tuyeres of a blast fur-
nace at moderate costs. In addition, increasing CPU power 
enables sophisticated online processing of tuyere video data 
at reasonable frame rates.

While most studies published in literature focus on 
characterising the coal plume to obtain information about 
constant coal discharge and dispersion,3–7) this study is dedi-
cated on the question how we can detect raceway blockages 
in a fully automated manner by digital image processing of 
tuyere camera images. However, this paper is not meant to 
be an extensive overview on image processing algorithms, 
nor will we present an ultimate solution for the purpose 
of blockage detection. It should be seen as a discussion of 
various aspects and difficulties to extract information from 
tuyere camera images. Even though the task of blockage 
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detection might not be ideally solved by processing images 
from tuyere cameras, they can also be used for other pur-
poses like erosion monitoring of the tuyeres or checking the 
correct positioning and burn-out of the PCI lances. Thus, 
blockage detection might only be one image processing task 
amongst others and the benefits of using tuyere cameras 
should be seen in a wider context that cannot be entirely 
covered here.

2. Recording of Images

The current market of industry cameras offers a huge 
selection of mid-range priced cameras of high quality. 
For the purpose of raceway blockage detection, the main 
features a camera must have are a sensitive chip with high 
dynamic range and a flexible exposure time setting. The 
former feature is needed to adjust the camera to the radiation 
level of a specific tuyere and to avoid pixel saturation, the 
latter is necessary to freeze the fast motion of coke particles 
in the raceway and avoid blurred images. Exposure times in 
the range of tex =  0.1 up to 1 ms have shown to deliver high 
quality images, depending on the type of additional filters 
mounted with the tuyere spyglass or camera lens. If no IR 
filter is applied tex must be reduced to 0.1...0.25 ms to avoid 
chip saturation. When using an IR filter tex can be increased 
by roughly one order of magnitude. The image data dis-
cussed in the following sections were recorded at BF1 at 
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voestalpine Stahl Donawitz GmbH with a Photon Focus 
MV1 CMOS camera which was temporarily installed on 
different tuyeres around the blast furnace and ran for several 
hours. In this way more than 100.000 images were recorded 
covering about 30 hours of BF operation. The images have 
been recorded at one frame per second. In parallel the hot 
blast data was stored from the process control system for 
comparison.

3.  Classification  of  Blockage  Events  and  Image  Pro-
cessing Requirements

A detailed discussion of various blockage events and 
raceway appearances has been presented in part 1 of this 
paper. Figures 1–6 show examples of the most important 
cases and their grey level histograms. Figure 1 shows an 
example of ordinary raceway behaviour. While Fig. 2 shows 
a complete blockage, Fig. 3 is a typical case for an only 
partly blocked tuyere. Figure 4 is quite similar to Fig. 2 but 

the blocking structure is located deeper inside the raceway 
and there is some remaining space for coke particles to 
move around. The same is the case in Fig. 5 but the blocking 
structure is actually not visible. It can be assumed that a low 
porosity zone is also located deeper inside the raceway but 
covered by the coal plume. For completeness Fig. 6 shows 
a situation where the PCI lance has been switched off and 
the raceway is clear and free of coal particles.

Based on the presented examples we can define three 
classes of blockage conditions which should be identified 
by an image processing algorithm and distinguished from 
ordinary operation or no coal injection periods:

Type 1: Visually obvious blockage of more than 50% of 
the tuyere area. Figures 2 and 4 would correspond to this 
type of blockage.

Type 2: Visually obvious blockage of less than 50% of 
the tuyere area (c.f. Fig. 3).

Type 3: Blockage event which is not clearly identifi-
able due to a larger distance from the tuyere. The blocking 

Fig. 1. Example of normal raceway operation and its correspond-
ing grey-level histogram.

Fig. 2. Example of complete blockage close to the tuyere and its 
grey-level histogram.

Fig. 3. Example of partly blocked tuyere and its grey-level histo-
gram.

Fig. 4. Large blockage deeper inside the raceway with free mov-
ing coke particles in front of the blocking structure.

Fig. 5. Tuyere blocked located further inside the raceway. The 
low permeability zone does not show clear textures like in 
Figs. 2, 3 and 4.

Fig. 6. Example of raceway with deactivated PCI branch and its 
corresponding grey-level histogram.
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structure can be partly hidden by coke particles or the coal 
plume (Fig. 5).

The discussion of various blockage events can be sum-
marized to the following requirements for a fully automated 
tuyere image processing:

•  The algorithm must be able to distinguish normal 
raceway operation (with floating coke particles) from 
full or partly blockages close to the tuyere as well as 
deeper inside the raceway.

•  The algorithm must be either independent or self-adap-
tive to the mean luminosity level at a specific tuyere 
(which is equivalent to the radiation level). These 
levels may vary due to inhomogeneous operation of 
the blast furnace as well as different conditions of the 
spy glasses and filters because of material ageing or 
dust deposition.

•  ROI based processing must be independent of absolute 
positions and pixel resolutions. Hence, all spatial cal-
culations must be done on a relative basis.

•  Due to blast furnace maintenance issues the orienta-
tion and lateral and transversal positions of the camera 
relative to the tuyere will inevitable change during 
long term operation. Hence, this must be corrected 
automatically on a regular level.

In this paper we will focus on the first task. The last three 
points will not be covered in detail in the further discussion 
as they are strongly depended on the chosen type of camera 
and lenses and the mechanical construction used for mount-
ing the cameras on the tuyere blowpipes.

It should be emphasized that for the purpose of testing 
and comparing different image processing methods, the 
event detection algorithms should be as sensitive as pos-
sible, regardless if a blockage is relevant for blast furnace 
operation or not. Only if most of the suspicious raceway 
conditions are detected one can built a sound statistics of 
blockage events which can later be used to find correlations 
with other data from blast furnace operation (e.g. burden 
charging, coke quality etc.). For a final online implementa-
tion of the blockage detection in the process control system, 
the sensitivity of the algorithms can be reduced as needed 
according to the frequency and significance of the events 
on a specific tuyere based on the existing knowledge for a 
specific blast furnace.

4.  Data Processing Framework, Test Data and Quality 
Assessment

To allow an efficient testing of various algorithms for 
digital image processing, the test-bench presented in part 1 
was extended. Due to the modular concept of the test-bench 
the image processing algorithms could be implemented as a 
second group of plugin functions beside the signal process-
ing algorithms discussed in part 2. To avoid confusion with 
the signal processing algorithms, the image processing algo-
rithms are labelled ‘B1’ to ‘B5’. All algorithms were tested 
on the same series of 10 000 tuyere images that was used to 
validate the signal processing strategies. For completeness, 
Fig. 7 shows the hot blast signal of the tuyere fT, the overall 
BF pressure signal fP that indicates the switching events 
of the hot blast stoves and the manually defined reference 
signal fR. The marked events are the same as discussed in 

part 1 and 2. Events #3 and #6 are major blockages and for 
event #3 the currently implemented flow rate thresholding 
has deactivated the PCI lance at this tuyere (in fact Figs. 5 
and 6 were taken from event #3 before and after the shut-
down of the PCI branch).

The task of blockage detection always boils down on 
obtaining an analog result signal fS giving appropriate infor-
mation on the current raceway condition. From this analog 
signal periods with blockages are then extracted via thresh-
olding to convert fS to a digital signal fB which can be used 
to shut down certain PCI branches. Hence, the resulting data 
is finally the same as for the signal processing algorithms of 
part 2 and we can also apply the same quality assessment 
for the image processing results.

5.  Discussion of Different Image Processing Algorithms 
and Blockage Detection Results

In this section we will discuss different algorithms for 
image processing and if they can fulfil the requirements 
previously defined. Generally, the algorithms can be divided 
in three families (Fig. 8). The simpler approaches process 
each image frame individually to extract certain features. 
This class of algorithms is mainly based on so-called 
morphological image segmentation. The second class is 
based on finding differences or correlations in two or more 
consecutive image frames. Such algorithms are commonly 
used in the field of motion detection. As a third class one 

Fig. 7. Hot blast flow rate signal fT for the time span covered by 
the images of the test sequence. Some blockage events 
have been marked for discussion and the reference signal 
fR obtained by manually checking the tuyere camera 
images. In addition, the overall BF pressure signal fp is 
plotted indicating the switching events of the hot blast 
stoves.

Fig. 8. Classification of image processing algorithms.
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could see the family of machine learning algorithms. The 
field of self-optimizing algorithms definitely offers some 
opportunities for applications like the one discussed herein. 
However, from an operator’s perspective things should be 
kept as simple as possible and computationally efficient. 
Thus, we focus on the first two classes of algorithms in this 
project phase. At a later stage a machine learning tool could 
be wrapped around one of the image processing strategies 
discussed in the following sections to improve long term 
stability and compensate e.g. ageing effects on the inspec-
tion glasses due to dust deposition.

The presentation of the results is done in the same way 
as in part 2. The following figures show the tuyere pressure 
signal fT as previously used for comparison, the analog result 
signal fS of the processing algorithm and the digital result 
fB after thresholding in comparison to the reference signal 
fR. Likewise, Table  1 gives an overview of the numeric 
results of the quality assessment. The runtime comparison 
given in Table 1 shall only be seen as a relative indicator 
for computational demand of the algorithms, as all compu-
tations have been done on a standard desktop PC without 
any kinds of runtime optimizations. An improved software 
implementation of the algorithms or the use of GPU based 
processing could certainly reduce the given numbers of 
Table 1 significantly.

5.1.  Single Frame Based Processing
5.1.1. Algorithm B1: Adaptive Thresholding of Grey 

Level Histograms
The most intuitive approach is to test each single frame 

for its average grey level, as blockages of type 1 usually 
appear much darker than a normal raceway situation as 
can be seen in the histograms of Figs. 1 and 2. However, 
blockages of type 2 and 3 do not strictly follow this logic 
as they can also contain brighter areas shifting the average 
grey level to values similar of normal raceway behaviour 
(the histograms of Figs. 3 and 5 are quite similar to the 
histogram of Fig. 1). Thus, simply analysing the original 
grey level distribution will not deliver proper results. The 
grey level histogram must therefore be manipulated in a 
way that the features of interest are emphasized. This can be 
achieved by cutting off the dark grey level values by calcu-
lating a dynamic threshold value based on Otsu’s method.8) 
This method assumes two groups of pixel intensities and 

calculates a threshold level to separate these two groups in 
a way that the variance between these classes is maximized. 
Due to the dark surroundings of the tuyere as well as the 
PCI lance and coal plume, there is always one peak in the 
histogram at very low grey-levels. If a blockage is present 
a second peak at low grey-levels is formed (Fig. 2). Otsu’s 
method therefore delivers a value separating these two 
peaks and delivering a value closer to 0 (on a normalized 
grey-level scale from 0 to 1). The second peak might be 
not so dominant for partial blockages (Fig. 3) or blockages 
superimposed by coke particles (Fig. 4) but still there is a 
lower number of bright pixels than in Figs. 1 and 6. Figure 
9 shows the processing results for Figs. 1 to 6 after mask-
ing with the threshold level calculated with Otsu’s method 
and the remaining grey-level histograms. One can see that 
there is a significant difference in the cut-off level for cases 
with blockages except for the partially blockage, which is 
obviously more difficult to detect. Analysing the averaged 
grey level of the remaining histogram still gives no reliable 
information, as the overall brightness of the raceway may 
drift over several hours of BF operation. However, the num-
ber of remaining pixels after thresholding delivers a useful 
indicator for blockage detection and 11 out of 19 events can 
be captured by this signal (Fig. 10).

5.1.2. Algorithm B2: Pixel Gradient Evaluation
Calculating the pixel gradients in x and y direction for a 

single image is rather fast and delivers morphological infor-
mation which is commonly used for edge detection. Precise 
edge detection of coke particles is hardly possible due to the 
high overlap of particles but during normal raceway opera-
tion the boundaries of the coke particles show strong lumi-
nosity gradients to the surrounding void area (c.f. Fig. 1). 
Inside the coke particles and in the gas phase the gradients 
are very small. In contrast, blockage structures only have a 
dark grey-level texture which comes along with small pixel 
gradients but covering a larger area of the image as can be 
seen from Fig. 11. The processing steps are as follows

1. mask out the PCI lance, coal plume and dark sur-
rounding of the tuyere by cutting off all pixel values 
below 0.2

2. generate a second mask to cut off all pixels >0.65. 
This will eliminate the bright spots dominated by 
heat radiation and containing no gradient information

Table 1. Summary of quality measures for the tested blockage detection algorithms after processing the testcase.

Algorithm Events 
calculated a)

Events 
matched

Events 
missed

False 
positive 
events

Cum. time 
offset tD (s)

ts,ma b) 
(%)

ts,mi c) 
(%)

ts, fp d) 
(%)

Threshold 
level ‘on’ e)

Threshold 
level ‘off’ f)

CPU time 
per sample (ms)

B1 22 11  8 10 716 16.7 83.3 3.8 0.55 0.95 7.3

B2 25  7 12 12 352 25.1 74.9 5.7 0.35 0.75 105

B3 25 12  7  7 835 16.0 84.0 6.8 0.35 0.80  0.25

B4 15  7 12  6 758 14.1 85.9 4.8 0.65 0.90 2.9

B5 22  8 11  8 700 12.7 87.3 4.3 0.35 0.75 2.6
a) The reference signal contains 19 blockage events.
b) Number of time stamps with active blockage signal relative to the manually identified blockage time.
c) Relative number of missing active blockage signal based on the manually identified blockage time.
d) False active blockage signal relative to the total number of time stamps in the test data.
e) The blockage detection signal will be ‘on’ if the image processing result is smaller than the given value.
f) The blockage detection signal will be ‘off’ if the image processing result is bigger than the given value.
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3. calculate the gradient magnitude of the image by a 
filter operation with a 3×3 Sobel kernel function.9)

4. apply the masks from step 1 and 2 to the gradient 
image

5. normalize the gradient image to the range 0..1.
6. cut-off all gradient levels below 0.3 (the low gradient 

levels are dominated by noise)

7. sum all remaining pixels
The results are shown in Fig. 12 where fS is the relative 

number of remaining pixels (related to the total pixel size 
of the image). The resulting signal of B2 appears more 
noisy compared to Fig. 10 and the gradient processing 
actually fails to detect the major blockage (event #3 in Fig. 
7) around t =  2 900 s. The peak at t =  3 100 s is actually 
caused by the brightening of the raceway after deactivation 
of the PCI lance and cannot be considered as a detection of 
the blockage.

5.1.3. Algorithm B3: Standard Deviation of Pixel Values 
on ROIs

It turns out that while the mean grey level is not able 
to cover type 2 and 3 blockages correctly, the standard 
deviation of the pixel grey levels contains a more precise 
information. In general, a normal raceway situation will 
have a high standard deviation due to the fact that coke 
particles (low grey levels) and the background (high grey 
levels) are both present and represent a highly alternating 
grey level signal. In contrast, a blockage of type 1 represents 
only small fluctuations in the lower range of the grey level 
histogram. This results in a smaller standard deviation of the 
grey levels. The same holds true for blockages of type 2 - a 
partially blocked and dark raceway will also significantly 
reduce the standard deviation of the grey levels for the entire 
image. Essentially, the information each pixel carries is a 

Fig. 9. Images after masking with dynamic threshold levels according to Otsu’s method and the remaining grey-level 
histograms after masking.

Fig. 10. Results of algorithm B1 (adaptive thresholding). fT is the 
blast signal of the tuyere, and fS is the result signal for the 
number of remaining pixels after adaptive thresholding. 
The horizontal lines indicate the threshold levels for 
switching on and off the blockage detection signal fB. 
Supplementary the reference signal fR and the state of hot 
blast stove switching fC are plotted.
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fluctuating grey level with a certain mean value and stan-
dard deviation. So, a moving coke particle basically carries 
this information (the grey level texture) along its trajectory. 

Considering the fast and highly turbulent (chaotic) motion 
of the coke particles in the raceway, we can assume that, 
from a statistical point of view, this information will be 
transported to any place in the raceway. Hence, a reduced 
region of interest (ROI) in the image will contain the same 
information as the entire image as a fast-moving coke par-
ticle will sooner or later pass a certain selected ROI position 
in the raceway. We shall also recall here that we only take 
snapshots of the raceway once a second (with sufficiently 
low exposure times to avoid motion blur), but that the actual 
movement of the coke particles is roughly three orders of 
magnitude faster. This leads to the conclusion that there is 
no need to process the entire image, and by processing only 
a small portion of the image we can significantly reduce 
the calculation times. For the present algorithm we put that 
principle to the extreme and defined only three horizontal 
lines for processing as is illustrated in Fig. 13. Instead of 
selecting two-dimensional ROIs (e.g. squares or circles), 
the line-based processing seems more appropriate for the 
task of blockage detection. As the lower part of the visible 
raceway is dominated by the PCI lance and the coal plume, 
the three lines are located in the upper half of the image. For 
each line the standard deviation Si of the grey levels along 
this line is calculated. To combine the results from the three 
line locations, they are multiplied to obtain the result signal 
f k S kS i i( ) ( )� �� 1

3  (Fig. 14). The quality of the results is 
much better than e.g. for algorithm B2 while the processing 
times of B3 are more than two orders of magnitude lower. 
Thus, processing of very small portions of the images can 
provide equal or even better results than processing the 
complete images.

5.2.  Processing  Based  on  Correlating  Information  of 
Consecutive Frames

Using the information of consecutive images is a more 
powerful approach as also the aspects of temporal changes 
are considered. There is plenty of literature from the field of 
motion detection which can be used as a starting point, but 
however, most motion detection algorithms are optimized 
for the goal of identifying moving objects in front of a more 
or less static background.10–15) As the tuyere images do not 
contain something which could be considered as a static 
background these methods will not meet the requirements 

Fig. 11. Gradient maps of the example images in Figs. 1 to 6 after 
processing with algorithm B2.

Fig. 12. Results of algorithm B2 (pixel gradients). fT is the blast 
signal of the tuyere, and fS is the result signal for the rela-
tive number of remaining pixels. The horizontal lines 
indicate the threshold levels for switching on and off the 
blockage detection signal fB. Supplementary the refer-
ence signal fR and the state of hot blast stove switching fC 
are plotted.

Fig. 13. Example image with the line positions marked that are 
used for processing in algorithms B3 and B4.
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for raceway blockage detection.
Another aspect which has to be noted here is that for nor-

mal raceway operation there is no correlation between the 
coke particles visible in two consecutive frames due to the 
fast motion of the particles inside the raceway. Tests with a 
high-speed camera have shown that frame rates of approxi-
mately 2 000 Hz provide a sufficient temporal resolution of 
the coke particle motion. Thus, tuyere images recorded at 
1 Hz do not contain correlated information unless a block-
ing structure appears that has a minimum lifetime of a few 
seconds. These slowly moving structures are therefore the 
only related information in consecutive images.

5.2.1. Algorithm B4: Line Based Pixel Correlation
Calculating the full two-dimensional correlation matrix of 

two images is rather slow (processing of the example images 
was in the range of 15 s per image pair on our test hardware) 
and hence not useful for an online implementation. How-
ever, for correlating information in consecutive frames the 
same statistical argumentation can be applied as discussed 
for algorithm B3, and processing of the full images is actu-
ally not necessary. We use the same three lines L1, L2 and 
L3 at different y positions from Fig. 13 and calculate the 
correlation signal for each of these lines according to

 R l k I x L k I x l L k

k N i

L i x i x ix

nx
, ( , ) ( , , ) ( , , )

.. , { , , }

� � �

� �
�� 1

2 1 2 3
1  ....... (1)

where k is the index of the images, i is the line index and lx 
is the horizontal coordinate in the images. To squeeze the 
information of the resulting signals RL,i(lx,k) into one time 
depended signal, the correlation signals are averaged and the 
product of the three averages is calculated (Eq. (2)). This 
emphasizes correlating luminosity distributions appearing 
on more than one line and prevents false positive signals 
caused by local effects.

 f k R l kS i L i x( ) ( , ),� �� 1
3  ........................ (2)

The resulting signal (Fig. 15) has a lower noise content 
than the results of B3 and a good separation of detected 
blockages from the base level. B4 shows the least number 
of false positive signals but on the other hand also detects a 
lower number of blockages and also misses the major event 
#6. It is interesting to note that the line-based algorithms 
B3 and B4 detect the suspicious period between t =  5 900 s 
and 6 600 s quite accurately. In the camera images from 
this period the raceway appears darker than usual and we 
can assume that the boundary conditions for coal combus-
tion are not ideal. There are no major blocking structures 
visible though, and also the hot blast signal does not show 
any reduction of the flow rate (c.f. Fig. 7). This is one of the 
few examples where signal processing of the flow rate data 
does not deliver any result and image processing is the only 
possible way to detect this raceway condition. However, it is 
not yet clear how the raceway behaviour during this period 
correlates with other BF operating data and if it is necessary 

Fig. 14. Results of algorithm B3 (pixel standard deviation on 
three lines). fT is the blast signal of the tuyere, and fS is 
the product of the grey level standard deviations on the 
three selected lines. The horizontal lines indicate the 
threshold levels for switching on and off the blockage 
detection signal fB. Supplementary the reference signal fR 
and the state of hot blast stove switching fC are plotted.

Fig. 15. Results of algorithm B4 (line based pixel correlation). fT 
is the blast signal of the tuyere, and fS is the product of 
the line correlations. The horizontal lines indicate the 
threshold levels for switching on and off the blockage 
detection signal fB. Supplementary the reference signal fR 
and the state of hot blast stove switching fC are plotted.

Fig. 16. Example for image subtraction. c) shows the absolute difference of images a) and b). The left half of c) shows 
higher values due to the differing presence of coke particles in a) and b). The right side of the result in c) shows 
values close to 0 as the blocking structure does not move very much between images a) and b).
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to detect such phases.

5.2.2. Algorithm B5: Sum of Absolute Differences
Subtracting images emphasizes areas which differ signifi-

cantly between two frames. An overall value for each pair of 
images in a sequence can be calculated by summing up the 
absolute values of all pixel differences (Eq. (3)).

 D k I x y k I x y k
x

n

y

n xy( ) | ( , , ) ( , , ) |� � �
�� �� 1
11

........ (3)

In image processing literature this approach is usually 
called ‘sum of absolute differences’. Figure 16 shows an 
illustrative example based on Fig. 3 and its immediate 
following image. The resulting signal in Fig. 17, though, 
cannot not provide an optimal blockage detection. Both 
major blockages (#3 and #6) in the dataset are missed and 
the signal to noise ratio of the result is not as good as for 
other algorithms.

6.  Summary & Outlook

In this third part of the study on raceway blockage detec-
tion we presented various approaches for blockage detec-
tion based on the visual information of tuyere cameras. 
The results demonstrate that blockage detection via image 
processing is not trivial as the optical appearance of the 
raceway can change significantly over time and even for 
a human operator it needs some experience to distinguish 
between normal raceway behaviour and various types of 
blockages or periods with reduced permeability of the race-
way. The very different nature of the highly dynamic flow 
situation inside the raceway makes it difficult to find proper 
strategies for automated analysis based on image processing. 
As an additional constraint the computational effort must 
remain feasible for an online implementation in the process 
control system. However, from a statistical point of view it 
is sufficient to process only reduced ROIs of the images and 
the line-based algorithms B3 and B4 actually perform better 
than other algorithms processing the entire images.

In direct comparison with the results of the signal pro-

Fig. 17. Results of algorithm B5 (sum of absolute differences). fT 
is the blast signal of the tuyere, and fS is the resulting 
signal for the sum of absolute differences. The horizontal 
lines indicate the threshold levels for switching on and 
off the blockage detection signal fB. Supplementary the 
reference signal fR and the state of hot blast stove switch-
ing fC are plotted.

cessing algorithms from part 2 it is evident, that the image 
processing algorithms produce signals with a worse signal to 
noise ratio. To discuss the pros and cons of image process-
ing the presented results are all unfiltered signals, though. 
Thus, applying a moving average filter with a window size 
of a few seconds will improve the results.

Finally, the analog result signals fS need to be converted 
to a digital yes/no decision if a blockage is present or not. 
So, the ideal result for this final thresholding step shows 
significant peaks off a more or less constant base level. 
The only algorithms which fulfil this requirement are the 
adaptive thresholding method (B1) and the line-based cor-
relation (B4). All other algorithms show higher noise levels 
and drifting mean values which makes thresholding more 
difficult.

In the end we can state that for the task of blockage 
detection signal processing of hot blast data delivers the best 
overall performance. So, even if a complete tuyere camera 
installation is available it does not necessarily mean that 
running an image-based blockage detection makes sense (in 
addition to other image-based monitoring tasks). A feasible 
strategy for the process control system could be to run a 
blast signal-based blockage detection and activate additional 
visual information from the tuyere cameras for the operators 
as soon as a blockage is detected from hot blast data. An 
optimal solution would therefore use a combination of both 
methods to obtain a maximum benefit from the available 
plant data. Such a combined method will also provide an 
ideal basis for further analysis of the reasons and frequency 
of occurrence of raceway blockages and their correlations 
with other blast furnace operating conditions.
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