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1. Introduction

To achieve minimal coke rates in blast furnace operation 
it is crucial to obtain optimal burning of additional fuels 
like e.g. pulverized coal (PC). However, there are operating 
conditions where an optimal burning is not possible. The 
frequent case of a full or partial raceway blockage can lead 
to reduced hot blast throughput on the effected tuyere. If 
PC is injected in that tuyere the unburned coal might lead 
to locally reduced permeability of the burden.1) To avoid 
negative effects of high PCI rates, it is necessary to have 
reliable information of the current raceway condition. This 
increases also the requirements for the BF process control. 
A reliable raceway monitoring system must be able to detect 
blockages quickly to trigger the shutdown of PCI branches 
with short latency.

The different nature of raceway blockages (which shall 
also be denoted as events in the further discussion) has been 
discussed in part 1.2) The frequency of occurrence may vary 
strongly between different furnaces and operating condition. 
Short blockages of only a few seconds duration may be 
observed several times per hour but are not relevant for BF 
operation. However, some blockages on BF1 at voestalpine 
Stahl Donawitz GmbH have been observed to last of more 
than 30 minutes in extreme cases. In these cases, the con-
tinuous injection of pulverized coal is not desirable and the 
PCI branch on the affected tuyere should be shut down to 
avoid accumulation of unburned coal particles.

In this second part of the paper we will address blockage 
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detection via hot blast flow rate data of the tuyeres. The flow 
rates can either be obtained via flow measurement devices 
like e.g. Venturi type flow meters or simply by measuring 
the pressure difference between the main hot blast bustle 
pipe and the tuyeres. Figure 1 shows the testcase signal for 
which also the tuyere camera images are available (c.f. part 
1). The signal contains some significant dips corresponding 
to reduced blast flow rates. Some of these dips are caused 
by the changing of the hot blast stoves and correlate with 
the signal of the absolute blast pressure. However, many 
other signal dips do not correlate with switching events of 
the stoves and it can be assumed that they are triggered by 
full or partial blockages of the tuyere.

Fig. 1. Test-signal with some blockage events marked and the 
reference signal obtained by manually checking the tuyere 
camera images.
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A simple and common solution to shut down single 
branches of the PCI system is based on a constant threshold 
level which is compared with the hot blast flow rates on 
the individual tuyeres. As the average signal level can vary 
significantly between the tuyeres due to inhomogeneous 
permeability in different raceway areas this is an imperfect 
approach. Furthermore, the flow rate signals are prone to 
aging effects of the pressure sensors or signal drifts causes 
by e.g. electrical interferences. Hence, it is clear that using 
a constant threshold level is not an optimal solution.

In this paper we discuss various approaches for improved 
signal processing of the tuyere signals to obtain a more reli-
able blockage detection. Section 2 resumes the discussion 
of the test signal and the software testbench introduced in 
part 1. Section 3 presents the algorithms under test and their 
results and Sec. 4 discusses the findings of a long-run test.

2. Test Signals and Processing Environment

Examples of various blockage events were discussed 
in part 1 based on the hot blast signals and tuyere camera 
images of BF1 at voestalpine Stahl Donawitz GmbH. The 
dataset presented covers approximately 2 hours and 45 
minutes of real blast furnace operation and will also be used 
for testing the algorithms in section 3. All signals obtained 
from the process control system have an update rate of Δt = 
2 s and are therefore discrete signals f (k) for timestamps k = 
nΔt. As a consequence, all algorithms in Sec. 3 are presented 
in their time discrete form.

Table 1 summarizes and classifies all intervals marked in 
Fig. 1. Major blockages are relevant for operation and must 
be detected (events #3 and #6). Events which are probably 
not relevant for BF operation are classified as minor block-
ages (events #1, #2 and #9). The signal dip of #4 is caused 
by the changing of the hot blast stove. During signal event 

#7 no abnormal raceway behavior can be noticed in the 
tuyere images, thus not every signal dip does necessarily 
correlate with a blockage event. The signal intervals marked 
as #5 and #8 come along with a rather diffuse and darker 
raceway appearance but do not show complete blockages. 
It can be assumed that the surrounding zone of the raceway 
has a reduced permeability, which comes along with longer 
residence time of coal particles.

Although not all blockages marked in the reference signal 
are relevant for blast furnace operation, the event detection 
algorithms should be as sensitive as possible in the test 
phase. For a later online implementation of the blockage 
detection in the BF process control system, the sensitivities 
of the algorithms can be reduced as needed according to the 
frequency and significance of the events on a specific tuyere. 
However, only if most of the suspicious raceway conditions 
are detected correctly, one can build a sound statistics of 
blockage events which can later be used to find correlations 
with other data from blast furnace operation (e.g. burden 
charging, coke quality etc.).

Figure 2 recalls the structure of the software testbench 
for signal and image processing. The algorithms in section 
3 are implemented as plugin functions and can easily be 
switched by a function pointer. For the details of the quality 
assessment by use of the manually defined reference signal 
fR, the reader is referred to part 1.

Note that all analog and digital signals in the figures 
throughout this paper have been scaled and shifted ade-
quately to keep the figures clearly arranged.

3. Discussion of Various Signal Processing Algorithms

In this section we will introduce the four different signal 
processing algorithms which have been used throughout 
this study. For easier referencing in the further discussion, 
the algorithms will be labelled ‘A0’ to ‘A4’. The list of 
algorithms is, of course, not exhaustive and the selection 
was focused on widely used methods from other fields of 
signal processing. In the case of algorithms A1 to A3 the 
major goal was to obtain efficient algorithms which could 
easily be implemented in the existing process control sys-
tem with a very low number of parameters that have to be 
adjusted. In the case of algorithm A4, which is based on 

Table 1. Classification of blockage events marked in Fig. 1.

Event # 1 2 3 4 5 6 7 8 9
major blockage X X
minor blockage X X X

reduced permeability X X
no blockage X X

Fig. 2. Outline of the software testbench for the processing of blast signals and tuyere images.
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wavelet transform, we wanted to test if a more sophisticated 
approach could perform significantly better than the rater 
simple algorithms A1 to A3 and therefore justify the much 
higher computational effort. In addition, a dummy algorithm 
A0 is implemented in the testbench which reproduces the 
simple thresholding of the hot blast signals as it is currently 
implemented in the process control system. For the test case 
of Fig. 1 only event #3 was recognized by this approach, 
thus no plot is given for the test-signal. However, it is 
interesting to compare the results of A0 with A1..A3 for 
the long-run test (c.f. section 4) and the long-term statistics 
of blockage events.

3.1. A1 - Signal Correlation
Most blockages produce a negative peak in the blast sig-

nal as shown in Fig. 1. Thus, one approach could be to com-
pare the signals with a pattern signal and use the correlation 
result to detect blockages. To get rid of the varying absolute 
levels the first step is to calculate the time derivative of the 
pressure signal ′fT . The derivative is then correlated with 
the pattern signal fM. This could be e.g. a negative ramp 
signal of a simple triangular shape or a bell-shaped Gauss 
curve as shown in Fig. 3(a). Before calculating the deriva-
tive of the time discrete signal fT, the signal is filtered by 
a moving average according to Eq. (1) to remove some of 
the signal noise

 f f w w fT k T k T k, , ,( ) ,� � � � � �1 1  ................... (1)

where w is a weight factor for new samples fT,k. The back-
wards correlation of the signal derivative with the pattern 
signal fM of length m can then be calculated according to
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Figure 3(b) illustrates the backwards correlation for a 
certain timestamp nΔt. Equation (2) implies the need for 
a signal buffer which has the length of the pattern signal 
fM which might be a disadvantage for the implementation 
in the process control system. In Fig. 4 the results for the 
test-signal are plotted. A triangle shaped ramp signal of 
120 s length was used as the pattern signal. Ramp signals 
turned out to produce better results than gauss shaped pat-
tern signals, probably because the changes in the tuyere 
signals have a more abrupt character rather than smooth 
changes. A length of 120 s is a good compromise to cap-
ture both, short and long events. The correlation result fS in 
Fig. 4 follows quite accurately the signal derivative ′fT  and 
thresholding with levels of 0.26 (on) and 0.40 (off ) deliv-

ers the major blockage events in the test-signal. Especially 
the major events #3 and #6 are detected very early which is 
advantageous for the shutdown of PCI branches.

3.2. A2 - Signal Filtering
The filtering approach is based on the fact that slow 

changes in the permeability around the raceway are based 
on a different time scale than hot blast flow rate changes 
caused by blockages. Thus, filtering the signal by two differ-
ent averaging window sizes can extract the rapid changes in 
the case of blockages from the long-term changes in the BF. 
The average filtering can be implemented in the same way 
as in Eq. (1) but using two different weight factors

 f f w w fT S k T k s s T S k, , , , , ,� � � �� � � �1 1  ............... (3)

 f f w w fT L k T k L L T L k, , , , , .� � � �� � � �1 1  ............... (4)

The ratio of the short and long-term averaging
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then forms a signal which is also very insensitive to drifting 
signal levels as can be seen in Fig. 5. Unlike algorithm A1 
whose correlation result is naturally normalized to the range 

Fig. 3. Principle idea of algorithm A1. a) two kinds of correlation patterns, b) sketch of short time backwards signal cor-
relation for a pattern signal of length m.

Fig. 4. Results of algorithm A1 (signal correlation). fT is the blast 
signal of the tuyere, ′fT  is the signal derivative, and fS is 
the correlation result. The horizontal lines indicate the 
threshold levels for switching on and off the blockage 
detection signal fB. Supplementary the reference signal fR 
and the state of hot blast stove switching fC are plotted.
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of 0..1, the result of A2 is a simple ratio which can be larger 
than 1. To obtain a useful scaling around the base level 1 
of the filter ratio the result fS is clipped to the range 0.5 to 
1.5 to cut off extreme ratios (e.g. the positive and negative 
peak of event #3 in Fig. 5 are clipped). The threshold levels 
to obtain the digital blockage signal fB where thon =  0.44 
and thon =  0.48, respectively. As with the signal correlation 
approach of A1 the two major blockage events #3 and #6 
are detected at a very early state.

In contrast to algorithm A1, the implementation of A2 is 
only based on storing the current signal levels to be used as 
fT S k, , −1 and fT L k, , −1 for the calculations in the next time step. 
In general, the short-term averaging would not be needed 
and it would also be possible to compare the most recent 
sample with the long-term sliding average. However, the 
short-term filtering removes some of the signal noise and 
produces more reliable results. A method which is based 
on comparing the most recent (unfiltered) sample with a 
threshold level is described in the next section.

3.3. A3 - Adaptive Thresholding
This algorithm is based on a similar procedure used in 

radar technology called ‘constant false alarm rate’ (CFAR)3) 
which is, generally speaking, an adaptive thresholding 
approach. Figure 6 illustrates the basic idea. The average 
signal level of a sliding history window is calculated by 
neglecting a certain number of preceding samples nGS from 
the most recent sample under test. By suppressing the sig-
nal values in this so-called guard samples, the most recent 
sample can be better isolated from the average signal level 
calculated from the training window of size nTS. The origi-
nal CFAR approach is based on symmetric signal windows 
around the sample under test, which makes it even more 
robust for signals of bad signal to noise ratio. However, a 
symmetric guard and training window around the sample 
under test imposes a time delay of nGS +  nTS in the result 
signal fS to the most recent signal sample fT(k). In contrast 
to radar technology with high sampling rates, the sampling 
rate of a BF process control system is typically only in the 

range of 1 Hz. Thus, this time delay is undesirably in our 
application and the present implementation skips one half 
of the guard and training window and uses the most recent 
sample fT(k) as the signal under test to retain a fast response 
time for blockage detection. The calculation steps are
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for the average background level of the training window and
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for the ratio of signal to background level. In fact, the final 
implementation is quite similar to algorithm A2, but the 
short-term average is replaced by the very last sample iso-
lated by the guard window. In analogy to radar applications 
the resulting signal can be interpreted as a measure for the 
signal to noise ratio. As can be seen from Fig. 7, the results 
of A3 are almost identical with the results of A2 and most 
of the pressure signal dips are identified correctly.

3.4. A4 - Wavelet Transform
Wavelet transform is a powerful tool in signal analysis 

and has a wide spectrum of applications beyond signal 
theory. It is widely used in image processing,4) biomedical 
applications5) and also fluid mechanics.6,7) The fundamen-
tals of wavelet transform can be found e.g. in the book of 
Kranz.8) Wavelet transform can overcome the shortcomings 

Fig. 5. Results of algorithm A2 (short and long-term filtering). fT 
is the blast signal of the tuyere and fS is the ratio of short 
and long-term averages. The horizontal lines indicate the 
threshold levels for switching on and off the blockage 
detection signal fB. Supplementary the reference signal fR 
and the state of hot blast stove switching fC are plotted.

Fig. 6. Calculation principle of adaptive thresholding in algorithm 
A3 similar to the CFAR method.3)

Fig. 7. Results of algorithm A3 (adaptive thresholding). fT is the 
blast signal of the tuyere and fS is the main result signal 
(can be seen as a signal to noise ratio). The horizontal lines 
indicate the threshold levels for switching on and off the 
blockage detection signal fB. Supplementary the reference 
signal fR and the state of hot blast stove switching fC are 
plotted.
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of simple signal correlation and classical Fourier transform. 
As discussed in section 3.1, the correlation with one specific 
pattern signal does not account for the different scales a 
signal peak might cover in the time domain. On the other 
hand, a sharp peak in the time domain will produce an infi-
nite series of sine and cosine functions if transformed to the 
frequency domain via Fourier transform. Wavelet transform, 
in contrast, is based on dilation and translation of a reference 
signal (the so-called wavelet) according to
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where a is the scaling factor and τ is the shift factor of the 
wavelet function Ψ. Equation (8) represents the continuous 
wavelet transform (CWT). Hence, a time-dependent signal 
x(t) is transferred in a time and scale space instead of a 
time and frequency space. This makes wavelet transform 
perfectly suited to detect anomalies of varying duration in 
noisy signals.

For reasons of computational efficiency, the CWT is usu-
ally transformed in a discrete formulation (DWT) similar 
to the discrete Fourier transform (DFT). In the DWT the 
wavelet function is only shifted and scaled by powers of 2. 
The wavelet coefficients cj,k for a certain scaling j and shift 
parameter k can then be obtained by
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Calculation of the DWT for multiple scales can be inter-
preted as a recursive high- and low-pass filtering. The DWT 
reduces the number of data points by a factor of 2 at each 
level of the filter process without loss of information. How-
ever, this has the disadvantage that the DWT is not transla-
tion invariant and makes data handling more difficult if e.g. 
the results of a certain scaling j shall be compared with 
another signal at the original sampling rate. The so-called 
stationary wavelet transform (SWT) solves this issue by 
upsampling the results of high- and low-pass filtering. So, 
the SWT results are actually redundant as they contain the 
same number of samples than the original signal.

We applied the SWT to our test data and compared the 
results of different wavelet functions and levels of scaling. 
Figure 8 shows three examples of wavelets which are suited 
for SWT (some functions only allow CWT). Although the 
‘Sym2’ and ‘Sym3’ wavelets seem more appropriate for 
the detection of signal peaks, a transformation of our test 
signal with the ‘Haar’ wavelet produces the best results. 

The decomposition of the test signal fT via SWT is plotted 
in Fig. 9. Signal A is the low frequency content of the first 
filter iteration and can be seen as the approximation of the 
original signal. The signals D1 to D5 are the high frequency 
results and represent the details of the signal fT at different 
filter iterations.

The results for the test signal are shown in Fig. 10 where 
the detail signal D4 was used as the main result for block-
age detection. The wavelet transform produces sharp peaks 

Fig. 8. Examples of wavelet functions. (a) the ‘Haar’ wavelet, (b) 
the ‘Sym2’ wavelet, and (c) the ‘Sym3’ wavelet.

Fig. 9. Wavelet decomposition of the test signal with the ‘Haar’ 
wavelet. The top signal is the original tuyere signal fT, A is 
the so-called approximation result (equals to low pass fil-
tering result of the first iteration), and D1..D5 are the detail 
signals (high frequency content of recursive high and low 
pass filtering) for a stationary wavelet transform with 5 
iterations.

Fig. 10. Results of algorithm A4 (wavelet analysis). The topmost 
signal is the blast signal of the tuyere and fS is the detail 
signal D4 of the SWT. The horizontal lines indicate the 
threshold levels for switching on and off the blockage 
detection signal fB. Supplementary the reference signal fR 
and the state of hot blast stove switching fC are plotted.



ISIJ International, Vol. 59 (2019), No. 3

© 2019 ISIJ479

at each signal anomaly but, in contrast to algorithms A1 to 
A3, does not detect the major blockages #3 and #6 before 
they are visually apparent. The selection which iteration 
result fits best for further processing certainly is a trade-off 
between large-scale and small-scale fluctuations in the 
original signal. A more sophisticated approach could com-
bine several results of different iteration levels. However, 
as the use of wavelet transform does not produce superior 
results compared to A1 to A3, which have a much lower 
computational effort, there was no further testing of signal 
processing based on wavelet transform.

4.  Long Term Test and Runtime Efficiency

So far, the algorithms were only tested on a small data-
set of 2 h 45 min for which tuyere images are available. 
To gain some long-term experience and runtime efficiency 
measures, the algorithms have been tested in a quasi-online 
implementation processing 1 500 hours of real plant data 
from voestalpine Stahl Donawitz GmbH. In this setup all 20 
tuyeres are processed in an endless loop on a standard desk-
top PC continuously reading the latest pressure data values 
from a database. This setup is already very close to a real 
online implementation at the BF. In an online system the 
results cannot be normalized to a common signal level like 
the short-term test signal as the bandwidth of signal levels 
is not known a priori. Hence, also the threshold levels have 
been adapted to the original levels of the resulting signals fS 
for each algorithm and the sensitivities have been set lower 
than in the offline test to produce less blockage signals 
which are not important from the operator’s perspective. 
The used data covers a time span of 1 500 operating hours 
from January to March 2018. Figures 11 and 12 show the 
results for one blast furnace and Table 3 gives the summary 
of the most important numbers. In Fig. 11 the total number 
of blockage events calculated by algorithms A1, A2 and A3 
are plotted for each tuyere along with the average number 
of blockages. In addition, the results of A0 is shown, which 
gives the number of events where the present BF control 
has shut down a PCI branch. These numbers are obviously 
much lower as the threshold levels are set very low. Thus 
Fig. 11(a) has a different scaling than (b) to (d). To get 
an idea if the total number of calculated blockages makes 

sense, Table 3 also gives the relative number of blockage 
events per tuyere and operating hour and, for comparison, 
the corresponding value for the test-signal discussed in the 
previous sections. Considering the reduced threshold levels 
and observations from the blast furnace, the obtained num-
bers between 1 and 2 blockages per tuyere and hour give 
a realistic picture of the frequency of raceway blockages.

The distribution of blockage events over the tuyeres is 
quite similar for A2 and A3 but looks somewhat different 
for A1. For example, A1 delivers fewer results for tuyere 1 
and more results for tuyeres 10, 12 and 16 compared to A2 
and A3. A closer look on the pressure signals shows that 
while tuyere 1 delivers a quite low noise level, the latter 
three produce a quite noisy signal. Presumably A1 is more 
sensitive to signal fluctuations and while producing good 
results for low noise signals the performance deteriorates for 
noisy signals. A2 and A3 seem more robust to noise and do 
not show such large differences in the results.

Fig. 11. Results of the long-run test over 1 500 BF operating hours. 
The total number of blockage events detected for the indi-
vidual tuyeres and the average values are plotted for algo-
rithms A0 to A3. Note that (a) has a different scaling than 
(b)–(d) due to the low number of shutdown events.

Fig. 12. Results of the long-run test over 1 500 BF operating hours. The figure shows the total number of active block-
age signals (sum of all time stamps set to ‘1’) on an hourly basis for the algorithms A1 to A3. In addition, the 
furnace pressure is plotted with an adequate scaling to visualize hot blast shutdown intervals.
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Figure 12 depicts the history of the total count of active 
time stamps in the blockage signals fB of A1 to A3 in 
comparison to the overall hot blast pressure signal for the 
investigated time span. Each vertical signal bar represents 
the sum of all active signals on all tuyeres for the period 
of one hour. A2 produces a high number of event signals 
around hot blast shutdown intervals, thus A2 is obviously 
more prone to overall changes in signal levels than A1 and 
A3. To avoid this, the suppression of result calculation dur-
ing hot blast shutdown must be extended with a phase-in 
and phase-out period. The results of A0 have been omitted 
in Fig. 12 as they would not be visible.

Table 3 also gives the averaged runtimes. While the 
numbers in Table 2 give the pure calculation time per 
sample of pressure data, the numbers in Table 3 are the 
cumulated times for processing one set of pressure data 
for the complete blast furnace. As the processing times in 
Table 3 are almost equal for all three tested algorithms, it 
can be assumed that the majority of the time is spend on 
data handling and looping over the tuyeres instead of the 
signal processing itself. However, due to the simplicity 
of the algorithms and the low overall processing times of 
approximately 4 ms for the complete blast furnace, there are 
no limitations concerning the computational demand of an 
online implementation in the process control system.

5.  Summary & Outlook

Running a blast furnace at high PCI rates demands 
improved process monitoring and control to ensure stable 
operation. The reliable shutdown of PCI branches during 
operating conditions where an efficient combustion of the 
injected coal is not possible is one factor to reduce possibly 
negative effects of high coal rates on blast furnace opera-
tion. This inherently brings the need for improved tuyere 
monitoring to assess the current state of the raceway and 
detect blockages at an early state.

In the present paper we discussed various signal process-
ing methods to improve the currently used solution of a 

Table 2. Summary of quality measures for the tested blockage detection algorithms after processing the testcase.

Algorithm Events 
calculateda)

Events 
matched

Events 
missed

False positive 
events

Cum. time 
offset tD (s)

ts,ma
b) 

(%)
ts,mi

c) 

(%)
ts,fp

d) 

(%)
Threshold 
level ‘on’e)

Threshold 
level ‘off’ f)

CPU time per 
sample (μs)

A1 15 11 8 5 815 23.6 76.4 10.1 0.26 0.40 12.0
A2 18 14 5 3 486 29.0 71.0  8.80 0.44 0.48  0.59
A3 13 11 8 2 740 14.0 85.5  0.80 0.22 0.30  7.92
A4 19 12 7 5 374 10.9 89.1  2.70 0.42 0.60 29.1

a) The reference signal contains 19 blockage events.
b) Number of time stamps with active blockage signal relative to the manually identified blockage time.
c) Relative number of missing active blockage signal based on the manually identified blockage time.
d) False active blockage signal relative to the total number of time stamps in the test data.
e) The blockage detection signal will be ‘on’ if the signal processing result is smaller than the given value.
f) The blockage detection signal will be ‘off’ if the signal processing result is bigger than the given value.

Table 3. Summary of the results for the long run test over 1 500 operating hours.

Algorithm total number of 
blockages

average number of 
blockages per tuyere

rel. number of blockages 
per tuyere per hour

runtime per sample for 
complete BF

rel. number of blockages 
per tuyere per hour for 

the test signal
A0 1 032   52 0.034 – –
A1 99 121 4 956 3.25 4.04 ms 5.45
A2 101 923 5 096 3.34 4.14 ms 6.55
A3 35 367 1 768 1.16 3.97 ms 4.73

primitive threshold comparison which does not account for 
drifting sensor signals or slowly changing burden perme-
ability. The comparison of different processing strategies 
showed that basically all presented algorithms can provide 
a much better blockage detection than a simple threshold 
procedure. The different nature of blockage events was 
discussed on the basis of a test signal from a real BF with 
corresponding tuyere camera images.

A long-run test over 1 500 hours of real BF operation has 
demonstrated that the obtained number of blockages give a 
realistic picture of raceway behavior and that the computa-
tional demands are low enough for online implementation 
in the process control system.

In part 3 of this paper series, we will discuss various 
approaches for visual blockage detection based on tuyere 
camera images. Having a proper solution for both process-
ing strategies, image processing as well as signal process-
ing of hot blast data, provides a good basis for evaluating 
combined approaches for an optimal raceway blockage 
detection system.
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