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Abstract: Hydrogen-based direct reduction is a promising technology for CO2 lean steelmaking. The
electric arc furnace is the most relevant aggregate for processing direct reduced iron (DRI). As DRI is
usually added into the arc, the behavior in this area is of great interest. A laboratory-scale hydrogen
plasma smelting reduction (HPSR) reactor was used to analyze that under inert conditions. Four
cases were compared: carbon-free and carbon-containing DRI from DR-grade pellets as well as fines
from a fluidized bed reactor were melted batch-wise. A slag layer’s influence was investigated using
DRI from the BF-grade pellets and the continuous addition of slag-forming oxides. While carbon-free
materials show a porous structure with gangue entrapments, the carburized DRI forms a dense
regulus with the oxides collected on top. The test with slag-forming oxides demonstrates the mixing
effect of the arc’s electromagnetic forces. The cross-section shows a steel melt framed by a slag layer.
These experiments match the past work in that carburized DRI is preferable, and material feed to the
hotspot is critical for the EAF operation.
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1. Introduction

Electric arc furnaces (EAF) produced more than 500 million t of crude steel in 2021 [1].
Although scrap is the primary iron carrier, the EAF is also a suitable aggregate for processing
direct reduced iron (DRI) or hot briquetted iron (HBI). This combination of direct reduction
reactor (DR) and EAF can be considered the major ore-based steelmaking strategy in
natural gas (NG)-rich countries such as Mexico [2], Saudi Arabia [3,4], and United Arabic
Emirates [5]. Nowadays, the 119 Mt DRI production in 2021 [6] is just a minor share of the
total ferrous feed for global steel production. However, due to the ambitious climate targets
of the European Union [7], this technology may gain greater importance in the future [8].
Therefore, the processing behavior of sponge iron is also of significant interest.

Many authors investigated the DRI melting behavior in the past. From the perspective
of a single pellet, one must distinguish between the dissolution in liquid steel, hot metal, and
slags. González et al. [9] mathematically describe the initial formation of a solid superficial
layer on the pellet in contact with liquid iron. The layer increases the particle diameter from
12 to 18 mm, which starts to soften after approximately 6 s. Depending on the considered
EAF arc length, the calculated diameter reaches 0 mm after 13 to 17 s. The melting rate
critically depends on the initial pellet diameter. Pineda-Martínez et al. [10] report similar
results in contact with non-reactive slags. However, due to the lower heat transfer, the
melting times are dramatically higher compared to the liquid steel case. Besides the particle
size, bath stirring is a decisive factor, as forced convection critically increases heat transport.
Ramirez-Argaez et al. [11] further use CFD modeling to study the multiphase slag–steel–DRI
system, with similar results. Pfeiffer et al. [12] confirm this trend experimentally. They
submerge single samples of DRI and HBI into a liquid pool and quench the specimen
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after predefined times. Carbon-free DRI initially acquires solid layers from steel as well as
slags. However, the higher the DRI carbon content, the faster the pellet liquefies in steel.
Nevertheless, even highly carburized sponge iron remains solid in slag after three seconds
of dipping. The authors explain this difference analytically using the Prandtl number,
which is increased by a factor of approximately 1000 in the slag case. Samples dipped
into saturated hot metal melt much faster, even if the melt temperature is below the iron
liquidus temperature. Carbon diffusion from the liquid to the solid phase explains that.
Penz et al. [13–15] investigate this phenomenon for scrap melting in basic oxygen furnace
(BOF) conditions. After forming the initial solid shell, carbon diffuses as long as the liquidus
temperature falls below the melting point. Once that happens, melting progresses.

DRI is usually continuously charged through the fifth hole in the EAF cover. To
gain consistent flat bath operation, DRI-based EAF are practiced with up to 30% hot
heel [16,17]. This operation is characterized by a short and stable arc mode and a smoothly
increasing bath level. The ideal charging point is located in the hot spot, in the cen-
ter of the three AC-EAF electrodes. Depending on the DRI temperature and the melt-
ing capacity, charging rates are limited to avoid the formation of so-called “icebergs” or
“ferrobergs”. Typical values range from 34 kg/(min·MW) [16,18,19] for cold DRI up to
55 kg/(min·MW) [20] for hot DRI. Consequently, hot DRI feeding is beneficial not only
in terms of energy consumption, but also in terms of the charging rate. Therefore, lower
tap-to-tap times can be expected.

In recent years, a lot of research has been conducted with a focus on electric steel-
making. The most important topics in this case are slag operation [17,21–24], process
modelling [25,26], and application of alternative carbon sources [27–29]. These topics are of
decisive importance when it comes to optimizing the EAF process for CO2-neutral steel-
making in the future. Slag operation defines the process sequence in multiple aspects. On
the one hand, slag foaming covers the electric arc and avoids radiation losses. Furthermore,
it defines the yield of metallic iron since it is high in (FeO), the partition of harmful elements
such as phosphorus, and the refractory lifetime. The use of biomass-based carbon carriers
provides the chance to almost fully reduce fossil-based carbon emissions, as the electric arc
furnace relies on a minimum amount of carbon for slag foaming operation. Lastly, process
simulation and modelling enhance process efficiency. The better one’s ability to simulate
the EAF and its mass and energy balances, the more energy and input materials, such as
slag forming oxides, can be saved.

However, there is still little data available in two respects. First is the application of
DRI based on hydrogen. This kind of sponge iron is free of carbon. Therefore, its liquidus
temperature is significantly higher than that of the conventional one. This difference
may lead to a different behavior during the melting step in the EAF. Second is the direct
observation of the feed material in the electric arc; it would be of great interest to learn more
about its behavior. This study aims to generate deeper understanding in both mentioned
respects and analyzes the behavior of DRI in an electric arc. Next to hydrogen-based carbon-
free material, carburized samples and a continuous slag feed are tested. The observations
provide more profound knowledge about the melting procedure and can be used to explain
the optimal DRI charging strategy and deliver an idea about the final crude steel quality.

2. Materials and Methods

Table 1 lists the applied iron ores and their composition. An industry partner provided
the samples and the chemical compositions. DR-grade pellets were used in tests 0, 1, and
2; a similar fine ore to test DRI fines from fluidized bed reduction was used in Test 3. To
make the result of the slag Test 4 clearer, a BF-grade pellet with a higher gangue content
was tested.
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Table 1. Ore compositions in wt.-%.

2 Fetot Fe2+ SiO2 Al2O3 CaO MgO TiO2 MnO Size/mm Test No.

DR-Pellet 67.5 0.19 1.94 0.32 0.87 0.35 0.06 0.21 10–12.5 0, 1, 2
BF-Pellet 64.8 0.42 5.79 0.47 0.48 0.60 0.06 0.04 12.5–16 4
Fine-raw 66.8 6.19 D50 = 0.1 -
Fine-oxi 1 66.4 1.87 D50 = 0.1 3

1 Composition of oxidized fine ore was determined by the mass balance; 2 Fetot—Total iron content.

The pellet samples were reduced in a vertical reduction furnace (VRF) using a 75 mm
diameter retort, precisely described in [30,31]. This is a standard aggregate used, for
example, to perform standard tests such as ISO11258 [32]. The retort is fixed on a scale,
providing the possibility to monitor the weight loss during the test. The reduction gas is
preheated in the furnace chamber; it enters the retort from the bottom and exits through
the top into the off-gas duct. The thermocouple measures the temperature in the center
of the pellet load. Approximately 500 g pellets were charged. After heating up to 900 ◦C
under nitrogen purging, 25 NL/min pure H2 was applied. Once the mass loss reached the
demanded metallization degree (MD), the test was stopped, and the material was cooled
under a nitrogen atmosphere. Three pellet samples were prepared: two from the DR-pellets
were reduced to 90% and 94% MD; one from the BF-pellets was reduced to 90% MD. In the
same retort, the highly reduced DR-grade DRI was carburized afterward under 8 NL/min
CH4 at 800 ◦C. According to the mass balance, it contains 2.1% carbon; due to the high
initial reduction, this is considered a reasonable presumption.

The fine ore was preoxidized in a heat treatment furnace [33] for 8 h at 700 ◦C. The
prereduction step is essential as hematitic ore is beneficial in terms of reducibility and flu-
idization behavior. The sample was reduced in a 68 mm fluidized bed reactor. This reactor
uses the same furnace as the 75 mm retort; its properties and dimensions are described in
detail by Spreitzer and Schenk in [34]. Reduction was performed using 6 NL/min N2 and
15 NL/min H2 without application of additional pressure in the reduction chamber. A grid
with holes of 0.4 mm in diameter was used, which is optimal for such fine-grained iron ores.
The final MD is approximately 89.4%, which is determined by mass balance calculation.

The melting tests were performed in the hydrogen plasma smelting reduction (HPSR)
reactor at the chair of ferrous metallurgy, Montanuniversität Leoben, Austria, whose layout
is visualized in Figure 1. This aggregate, extensively described in [35,36], is usually applied
for direct smelting reduction tests. The method itself is well established. Regarding
reduction in atmosphere with hydrogen, numerous research topics were investigated in
the past. Optimizations were conducted in case of arc stability [37], electrode shapes [38]
and ore prereduction degree [39]. If operated in an inert atmosphere as in this test series, it
can be considered a DC laboratory-scale electric arc furnace with a graphite electrode. The
electrode had a diameter of 26 mm, a 10 mm tip, and a 5 mm axial opening through which
the nitrogen was supplied.

The samples were charged batchwise in a steel crucible whose exact dimensions
are summarized by Ernst et al. [39]; all experiments were performed with 2 NL/min
nitrogen purging. Table 2 summarizes the performed tests. Test 0 acts as a method test
and is not further evaluated. In Test 4, 14.0 g CaO and 3.1 g MgO were continuously
fed through a hollow electrode. Technically pure oxides with 95 and 99% purity from
Carl Roth GmbH + Co. KG, Karlsruhe, Germany were used. Initially, the transformer
current was set to 100 A. During the test, it was decreased stepwise, depending on the
transformer temperature and voltage. For that, a silicon-controlled rectifier (SCR) was
applied. In the final approx. 2.5 min of Test 4, the power input was maximized to intensify
the slag–metal stirring.
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Figure 1. Schematic HPSR furnace layout reproduced under terms of the CC-BY license [37]. Copy-
right 2020, the authors, published by MDPI.

Table 2. List of tests.

Test Gas t/min Sample Mass/g Comment

0

2 NL/min
N2

15 1 49.7 Pretest
1 15 1 101.6 0%C DR-grade-DRI
2 15 2 101.7 2.1%C DR-grade-DRI
3 15 3 100.4 0%C Fine-DRI

4 23 4 100.1
0%C BF-grade-DRI +
Continuous feed of
slag-forming oxides

The experiments were evaluated in multiple ways. The HPSR reactor had an AXIS-
Q1775 camera system (Axis Communications AB, Lund, Sweden) and a GAM 200 mass
spectrometer (Pfeiffer Vacuum Technologies AG, Aßlar, Germany), which provide the
possibility to monitor the electric arc as well as the off-gas. Further, voltage and current
values were recorded and documented.

The crucibles were visually checked using a Sony Alpha 6000 DSLM camera (Sony
Group Corporation, Tokyo, Japan) equipped with a Sigma Contemporary 30 mm lens
(Sigma Corporation, Kawasaki, Japan). Afterward, the crucibles were embedded, cut, and
the cross-sections were metallographically prepared. Figure 2 details the cutting scheme.
Etching was performed using a 1% nital solution to highlight the transition between the
crucible and the sample. We adjusted the time iteratively between 6 and 10 s.
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Figure 2. Location of metallographic sample.

The microsections were investigated using a Keyence VHX 7000 digital microscope
(Keyence Corporation, Osaka, Japan). The chemical analysis of the gangue layer was
performed via SEM-EDX Fei Quanta 200Mk2 (FEI Company, Hillsboro, OR, USA). Small
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samples were taken from two crucibles, Test 2 with carbonaceous DRI and Test 3 with DRI
fines, to analyze carbon content using LECO. Test 3 can be considered representative for
the carbon-free DRI tests.

3. Results

Figure 3 shows the voltage as a function of the current for all tests. The different point
clouds represent stability regions from different controlling ranges. The more concentrated
the points in the diagram are, the more stable the arc is. Since only minor fluctuations could
be observed, arc operation was relatively stable in all cases. Nevertheless, the violet Test
3 with the DRI fines shows the broadest range, while the green Test 4 dots are relatively
closely distributed. That confirms the arc-stabilizing effect of a slag layer on top of the melt.
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Figure 3. Voltage (U) vs. current (I) diagram.

All relevant furnace parts, the crucible, and the sample materials were weighed for
a mass balance. All balances are negative, with Test 2, C-DRI, having the largest mass
loss through the gas phase. During this test, 27.0 g dusted and evaporated from the
furnace chamber without becoming separated in the off-gas filter. Further, the reduction
reactions influence the mass balance in this case. That was the least pronounced at Test
4 with the slag cover and only 2.8 g loss. Tests 1 and 3 are in the middle, with—11.3
and—14.9 g, respectively.

Figure 4 shows in situ photographs during the carbon and slag-free Tests 1 and 3. The
electric arc moves over the surface and melts the sponge iron. The pellets in Figure 4a offer
a contrast to describe the progress better. A liquid pool is on the left-hand side, while a
pellet structure can still be observed on the right side. In contrast, the DRI-fines in Figure 4b
do not show any contours, making a detailed observation difficult.
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The formation of bubbles characterizes the carburized sample in Figure 5; see the red
circle. These blisters indicate a reduction in residual iron oxide with carbon in the sponge
iron sample.
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Figure 5. In situ photograph during Test 2.

The dissolution of slag-forming oxide can be observed in Figure 6. The photograph
in (a) was taken directly after the addition of powder. In (b), the powder dissolves in the
superficial slag layer; see the red circled spot. After charging the oxide powder in (c), the
whole surface seems to glow. That differs from the other samples in which the intensive
cooling effect through the steel crucible leads to a localized hot spot. This appearance
demonstrates the insulating effect of the slag layer.
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Figure 6. In situ photographs during Test 4 (a) with oxide powder on top; (b) dissolution of oxide
powder; (c) after all slag formers are charged.

Figure 7 shows the off-gas analysis of Test 2 with carburized DRI. The high CO and
CO2 amounts indicate a reduction in residual iron oxide, confirming the observation above.
The carbon content of 0.75%, which significantly decreased from the DRI, correlates with the
result. A further striking aspect is the increasing hydrogen amount resulting from moisture
in the furnace refractory. The higher the temperature, the more moisture is released, which
reacts to H2 and CO after the heterogeneous shift reaction.

Figure 8 provides the off-gas analysis of Test 3 with the DRI fines. H2 shows an
analogous behavior as above; CO and CO2 result from electrode burn-off as the sample
contains no carbon. Unfortunately, the analysis of Test 1 was lost due to a software issue.
Nevertheless, Figure 8 is representative of exhaust gas compositions of the carbon-free
samples in Tests 1, 3, and 4. Sample 3 remained almost carbon-free with 0.09%, which may
have resulted from interactions with the steel crucible or the graphite electrode.
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Figure 9 shows the sample crucibles after the tests. Red dust settles superficially. The
most plausible explanation is the formation of iron oxides or hydroxides from the vaporized
Fe with moisture from the furnace refractory. That aligns with the slag-covered sample
in (d). On the one hand, it shows a primarily grey color; on the other hand, this sample
evaporated the least. While the samples in (a) and (b) present a rough surface, the slag
layer in (d) is relatively smooth but brittle with many cracks. This layer’s dark grey color
indicates a high amount of iron oxide. Tests 1 and 3 imply a formation of a concentric
structure from the temperature gradient around the electric arc.

Looking at the carburized DRI sample from Test 2 in (b), two aspects catch the eye.
Firstly, lots of droplets cover the crucible on the lower right-hand side. Secondly, the sample
surface appears less metallic but somewhat yellowish and glassy. A possible explanation
for this appearance may be that CO blisters from reduction reactions splash out metallic
droplets. These droplets arrive on the crucible surface. Further, the blisters drag the gangue
onto the surface of the sample. The splashes also explain the pronounced mass loss, as
some could land in the furnace refractory without being noticed.

Figure 10 shows the top layer particle from Test 2 as a digital microscope image from
the upper and lower side. While (a) looks metallic with many blisters, (b) seems glassy.

Table 3 provides the approximate composition of the mentioned particle from both
sides, determined by SEM-EDX. Although the iron oxide content in the lower part is slightly
higher, the compositions do not differ significantly. The shiny gray color indicates that it is
partly metalized. Nevertheless, SEM-EDX does not provide the possibility to differentiate
between Femet, Fe2+, and Fe3+.
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Table 3. Chemical composition of Test 2 top layer from Figure 10, determined by SEM-EDX as
elements and recalculated as oxides.

wt.-% FeO MnO SiO2 Al2O3 CaO MgO TiO2

Lower side 16.9 9.33 36.3 7.40 19.0 9.57 1.55
Upper side 14.3 9.19 38.3 7.77 19.7 9.16 1.58

Figure 11 shows the digital microscope images of the cross-sections. The following
aspects are noticeable:
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• The carbon-free samples from Tests 1, 3, and 4 show numerous pores, especially for the
fine-DRI sample in (c), with one big blister. Further, they contain dark spots indicative
of gangue inclusions.

• The carbon-bearing sample in (b) looks completely different in this case. It forms
a dense structure without pores and inclusions. This behavior correlates with the
macroscopic observations and the gangue being agglomerated and collected on the
sample top.

• Samples in (a), (b) and (c) are merged with the crucible. The opposite is the case in (d).
The slag frames the steel; the straight borderline indicates the absence of liquefying
of the crucible. This picture is even more striking since the crucible center appears
enriched with slag; compare the cutting scheme in Figure 2.

4. Discussion

Small-scale melting tests were performed with different DRI types in the HPSR reactor
in the EAF operation. The stable electric arc confirms the good fusibility of all DRI samples.
That is especially true if the furnace is operated with a slag layer, leading to little electrical
fluctuations, highlighted in the stability areas of Figure 3.

All mass balances are negative, indicating extensive evaporation and dust losses into
the furnace chamber without becoming separated in the off-gas filter. That is the most
pronounced for the carbon-bearing sample in Test 2. The larger droplets on the steel
crucible, visible in Figure 9b, suggest a second effect. CO bubbles from the reduction in
residual FeO splash out of the melt into the furnace chamber, carrying liquid droplets.
Therefore, this mass loss is not considered in the mass balance. The high CO amount in the
off-gas and the low final carbon content of 0.75% indicate significant reduction of residual
iron oxide in the DRI.

Test 2 also stands out in another way. The cross-section is free of blisters and gangue
inclusions. The gangue accumulates on the surface. This appearance indicates a purifying
effect of the CO bubbles in terms of gases and entrapments; the remaining carbon could
enhance this effect by lowering the melt viscosity [40].
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Test 4 demonstrates the critical influence of slag on the melting process. Besides the
thermal insulation effect, the slag also avoids evaporation and dust losses and stabilizes
the electric arc slightly. Further, this test demonstrates bath stirring, possibly from electro-
magnetic forces [41]. While the melt in all other tests merges with the crucible, this is not
true in Test 4.

Combining these observations with findings from previous studies, we can explain
the crucial importance of the DRI feeding point. For fast DRI melting, a contact between
pellet and steel melt is essential [9–12,42]. In the arc center, intensive bath stirring happens.
Consequently, besides the high temperature, this mixing effect increases the chance of
DRI contacting crude steel, increasing its melting rate. Higher carbon content can further
enhance that in the melting stage, which can be decreased during refining before tapping.

5. Conclusions and Outlook

This study demonstrates the importance of the DRI feeding point into the electric arc
hotspot. It is not only the high temperature but also the electromagnetic stirring mechanism
that leads to an increased chance of DRI contacting the liquid steel and forcing convective
heat and material diffusion. Test 4 with slag-forming oxides demonstrates this effect by
the formation of a slag layer which covers the steel sample. The slag layer also slightly
stabilizes the arc, insulates the bath thermally and prevents severe evaporation.

An increased carbon content during the charging and melting stage seems to be further
beneficial. As previous studies show, melting is faster with carbon. Besides that, Test 2 with
carbon-bearing DRI suggests that a cleaning effect from the CO bubbles can be expected,
which benefits the final crude steel quality. This effect is evident in two respects. On the
one hand, the structure of Test 2 appears free of blisters, and on the other hand, the gangue
oxides are deposited on the surface instead of being finely dispersed. Last but not least,
the fact that more than half of the carbon reacted with residual oxides indicates a high
reactivity of carbon in DRI.

In a nutshell, the optimal conditions based on these experiments would be as follows:
a highly carburized DRI that is fed directly into the electric arc hot spot. There, the
pronounced stirring effect of the electric arc provides the optimal conditions for sponge
iron melting. As the sample from carbon-free DRI shows blisters and entrapments, besides
the charging spot, the hot heel operation in the EAF also demands critical consideration.

The results are a first step for possible future experiments with this method. Interesting
topics could be the comparison of different prereduction states, continuous feed of fine
DRI, or quantification of the results by using energy balances and calculating melting rates.
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