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1. Introduction

The dissolution of oxide particles in metallurgical slags are deci-
sive processes during basic oxygen steelmaking (BOS). Especially
the dissolution of lime (CaO) is a determining step in the forma-
tion of suitable slags used in BOS.

Preconditions for optimized processes are on the one hand
slags with appropriate physical properties, for example, suitable
viscosities, and melting occurring in the optimal temperature
and composition range. In contrast, slags are expected to pro-
mote certain chemical reactions, for example, removal of

phosphor from the melt. A fast dissolution
of lime contributes significantly to the pro-
ductivity of the BOS process. Thus, the
properties of the molten steel are enhanced
by metallurgically active CaO required in
the liquid slag.[1]

In addition, an effective and efficient
inclusion removal routine in secondary
metallurgy is essential in the context of
high steel cleanliness, see for example,
Holappa and Helle.[2] Dissolution of
unwanted oxide inclusions is possible by
slags specially designed for this purpose.
A thorough understanding of the underly-
ing thermodynamic and kinetic founda-
tions of these processes is paramount for
this aim. An old adage restated by Mills
et al.[3] stresses the importance of under-

standing the reactions in metallurgical slags in terms of process
control: “Look after the slag and the metal will look after itself.”

Different modeling approaches for the dissolution of oxide
particles in liquid slag are discussed in the open literature
and the rate determining steps for the dissolution of oxides in
molten slags are still a topic of ongoing research. Verhaeghe
et al.[4–6] proposed a lattice Boltzmann dissolution model for
the simulation of the dissolution of arbitrarily shaped solid par-
ticles in fluid flows. In a later work, this model was applied to the
dissolution of spherical alumina particles in ternary slags.[7] It is
worth mentioning that the lattice Boltzmann method is very
demanding in terms of computing power. Thus, its applicability
to comprehensive process models is limited.

The well-known shrinking-core model[8,9] is applied to the dis-
solution of lime in various works, see for example, refs. [10–17].
Generally, the spherical system representing the dissolving par-
ticle is divided into four subunits, namely the solid core, sur-
rounded by a product layer, which is covered by a liquid
boundary layer and enclosed by the liquid bulk slag. The diffu-
sion/reaction processes occurring during the dissolution of solid
particles in liquid slags are classified into several steps within this
model, details can be found in ref. [8]. The individual steps
during particle dissolution occur simultaneously on different
time scales, with the slowest steps being rate controlling for
the overall dissolution process. In this sense, the shrinking core
model has been used to discuss the rate-limiting steps for disso-
lution kinetics.[18] Sarkar et al.[11] apply an extended shrinking
core model with the possibility to use a spherical, cylindrical,
or plate geometry of the system. They use a mixed control
approach for calculating the dissolution of lime in steelmaking
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Herein, a diffusion model for the dissolution of oxide particles in multicomponent
slag systems is developed. It is assumed in this model that a sharp-interface
separates the solid particle from the liquid slag. Minimization of the Gibbs energy
provides the conditions at the interface. The differential equations for multi-
component diffusion in the liquid slag are solved numerically via a finite-difference
scheme. It is indicated via parameter studies that the diffusion controlled
dissolution kinetics may result in strongly different dissolution profiles depending
on the initial conditions. It is demonstrated that the rate-controlling dissipative
process is the diffusion of components for cases where earlier investigations
claimed that a coupled diffusion-reaction process is in charge of the dissolution
kinetics. Eventually, the numerical results are compared to data obtained from
high-temperature laser scanning confocal microscopy (HT-LSCM) experiments.
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slags under forced convection. Sarkar et al.[11] assume that slag-
film diffusion, product-layer diffusion, and an interfacial reaction
(formation of Ca2SiO4 from CaO and SiO2) contribute to the
overall dissolution kinetics. Although their modelling approach
seems to be highly elaborated, comparison with experimental
data could only be achieved with several empirical parameters
and relations.

Guo et al.[19] divide the dissolution of lime into different stages
that correlate with the formation and dissolution of an interfacial
reaction layer. They argue for a shift in the rate controlling step from
diffusion in the boundary layer to amixed control stage, where both,
the chemical reaction at the interface and diffusion in the boundary
layer, determine the kinetics of the process.

The dissolution of spherical oxide particles in
CaO–Al2O3–SiO2 slags is investigated by Feichtinger et al. and
Michelic et al.[12,13] both experimentally and by computer simu-
lations. These authors assume that the solid/liquid interface is
fixed to circumvent mathematical difficulties when calculating
the concentration profile, details can be found in ref. [20].
Strictly speaking, however, the theoretical concept of this
quasi-static dissolution can only be applied to growing particles.
In this sense, it is worth mentioning that growth and melting are
different situations in principle[21] as the particle serves as
a solute source or sink, respectively. In the case of oxide
particle dissolution, this quasi-stationary “invariant interface
approximation” is, thus, an unrealistic assumption (for a deeper
discussion on approximate solutions for dissolution problems
see, for example, ref. [22]); hence, an additional correction factor
had to be introduced that allows for describing the experimental
results in the works by Feichtinger et al. and Michelic et al.[12,13]

As discussed by Xuan and Mu,[23] this correction factor implies a
mixed control mode for the kinetics, which, however, only cor-
rects the oversimplifications in the quasi-stationary diffusion
model. Xuan and Mu[23] also started from the quasi-stationary
approximation and developed an analytical diffusion-distance-
controlled dissolution model. Within this model, the shape of
the dissolution profile is explained via the diffusion distance
of the dissolving component. A profile coefficient is required
in Xuan and Mu’s quasi-static model[23] that controls the
diffusion distance to obtain dissolution profiles that agree with
experimental results.

It is reasonable to assume that fluid flow due to natural
convection occurs during experimental investigations of oxide
particle dissolution. Convection may be caused by temperature
gradients in the experimental setup, differences in molar
densities, or capillary effects due to the interfacial energy at
the interface of the particle with the surrounding melt.[23] The
influence of convection on the dissolution is out of the scope
of the modelling by means of the sharp-interface diffusion model
as presented in this work. However, this phenomenon is expected
to be of minor importance in small scale high-temperature laser
scanning confocal microscopy (HT-LSCM) experiments and will
be one point of discussion in the results section.

It is the aim of this paper to demonstrate that the dissolution
of oxide particles in melts can be described properly by consid-
ering multicomponent diffusion in the liquid phase and simul-
taneous interface motion (i.e., shrinkage of the solid particle),
where the influence of the interface motion on the concentration
profile is automatically considered without the need for empirical

fitting parameters. In this sense, a sharp-interface model, see, for
example, refs. [24–27], is developed, where local equilibrium is
assumed at the solid/liquid interface.

2. Theory

2.1. Geometry of the System, Phase Transformation, and
Diffusion

The system is considered to be 1D, that is, one spatial parameter r
describes the position in the system. In this sense, the boundary
of the system can be a plate, a cylinder or a sphere, see Figure 1
for the case of a spherical system. The two phases present in the
system are the solid particle and the liquid slag, which are
separated by a sharp (i.e., infinitely thin) interface.

All chemical potentials μsolidk,I of the components k in the dis-
solving solid phase are assumed to be equal to the chemical

potentials μliquidk,I of the components k in the liquid phase at
the interface, that is, local equilibrium prevails at the interface

μsolidk,I ¼ μliquidk,I (1)

The mole fractions xsolidk,I and xliquidk,I at the solid and the liquid
side of the interface I are calculated based on this local equilib-

rium assumption. Furthermore, xliquidk,S is the mole fraction of
component k at the system boundary and Δxk,S is the maximum
mole fraction in the melt. The evolution of the mole fraction
profiles with time are obtained by simultaneously solving the

Figure 1. Graphical representation of the sharp-interface model in the
case of the dissolution of a spherical particle. Mole fraction xk of compo-
nent k versus spatial coordinate r is depicted in the upper schematic
sketch. In the lower sketch, the spherical particle is shown, dissolving with
a velocity v, where fluxes jk of the components in the liquid slag occur.
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diffusion equation and the mass balance in the liquid phase. The
diffusion equation for spherical geometry follows as

∂xk
∂t

¼ D
∂2xk
∂r2

þ 2
r
∂xk
∂r

� �
, t ≥ 0, R ≤ r ≤ Rþ S (2)

where D is the diffusion coefficient, xk the mole fraction of the
diffusing component, and t the time. Since diffusion in this
model takes only place in the liquid phase, the spatial coordinate
r ranges from R, the radius of the solid particle to (RþS), the
outer boundary of the system. The relevant range for the
calculations lies in the liquid zone of thickness S. The boundary
conditions at r ¼ R and r ¼ Rþ S are

xkðr ¼ R, tÞ ¼ xliquidk,I (3a)

∂xkðr ¼ Rþ S, tÞ
∂r

¼ 0 (3b)

and the initial conditions at t ¼ 0 are

xkðr ¼ R, t ¼ 0Þ ¼ xliquidk,I (4a)

xkðr > R, t ¼ 0Þ ¼ xk,0 (4b)

where xk,0 are the initial mole fractions of components k in the
liquid. A discretization is applied which transforms Fick’s
second law to the following form by means of finite difference
approximation

Δxk,i
Δt

¼ D
xk,i�1 þ xk,iþ1 � 2xk,i

Δr2
þ 2
ri

xk,iþ1 � xk,i�1

2Δr

� �
(5)

with the node points i ranging from nþ 2 to p� 1. The position
of the interface is marked by the index n, see Figure 2. The mole
fractions are updated iteratively for each time step

xtþΔt
k,i ¼ xtk,i þ Δxk,i (6)

The position- and time-dependent mole fractions xkðr, tÞ are
evaluated at all node points in the liquid except at the node point
corresponding to the interface position n and the position nþ 1.
The mole fractions at the liquid side of the interface follow from
the local equilibrium conditions (see boundary condition 3a);
details with respect to the required thermochemical equilibrium
calculations are provided in the next section. The mole fractions
at node nþ 1 are approximated by a parabola of the form

xk ¼ ar2 þ br þ c (7)

where the mole fractions xk at positions n and nþ 2 are the end-
points of the parabola. The coefficients of the parabola follow
from the following relations

a ¼ xk,nΔr þ xk,nþ2Δrn � xk,nþ1ðΔr þ ΔrnÞ
ΔrnΔrðΔrn þ ΔrÞ (8)

b ¼ xk,nþ2Δr2n � xk,nΔr2 þ xk,nþ1ðΔr2 � Δr2nÞ
ΔrnΔrðΔrn þ ΔrÞ (9)

c ¼ xk,nþ1 (10)

The coefficients a, b, and c are position dependent and time
dependent as the mole fractions xk,nþ1, xk,nþ2, andΔrn depend on
both position and time.

The time derivative of the mole fraction x
:
k,nþ1 is obtained by

inserting a and b from Equations (8) and (9) into Equation (2)

x
:
k,nþ1 ¼ 2aD 3þ b

arnþ1

� �
(11)

The mole fraction profile is mirrored at the system boundary,
which is defined by the position of the system boundary vertex p.
This effectively accounts for the constraint that no mass is
allowed to cross the system boundaries as required by boundary
condition 3b and thus the fluxes jk,p at nodal point p are all zero,
jk,p ¼ 0. The diffusive flux of components k in the melt at the
spherical interface are computed by using the mass balance

jk,n ¼
ΔrþΔrn

2 r2nþ1x
:
k,nþ1 þ

Pp
i¼nþ2 Δrr

2
i x
:
k,i

Vmðrn þ Δrn
2 Þ2 (12)

The partial molar volumes Vk are assumed to be equal for all
components k in the liquid phase. They are, thus, equal to the
molar volume Vm. Finally, the interface velocity vg follows in gen-
eral from

vg ¼
ðjsolidk � jliquidk ÞVm

ðxsolidk � xk,nÞ
(13)

It is assumed that the fluxes jsolidk of the components k in the
solid phase are small compared to those in the liquid phase and
are neglected. The interface velocity v, which is defined to be
positive for shrinking particles, that is, the sign is changed, is
provided by

v ¼ jliquidk Vm

ðxsolidk � xk,nÞ
(14)

The interface mobility is infinitely high and does not hinder
the interface movement, which is a consequence of the assumed
local equilibrium at the interface. For a pure condensed phase
that solely consists of a single diffusing component, xsolidk ¼ 1
holds. The extension to multicomponent diffusion for an
M-component system is done in a straightforward way extending
Equation (2) toFigure 2. Representation of the 1D mesh of the numerical model.
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∂xk
∂t

¼
XM�1

j¼1

Dk,j
∂2xk
∂r2

þ 2
r
∂xk
∂r

� �
, k ¼ 1, 2 : : : ,M � 1 (15)

with the elements Dk,j of the diffusivity matrix being defined as
(see also[28])

Dk,j ¼
Dknk
ak

⋅
∂ak
∂nj

(16)

where ak is the activity of component k, Dk is its mobility, and nk
is its molar amount.

2.2. Thermochemical Calculations

The mole fractions xsolidk,I and xliquidk,I of component k at the solid
and the liquid side of the interface (see Figure 1) are calculated by
means of Gibbs energy minimization. The difference of the mole

fractions xliquidk,I and xliquidk,p between the interface and the right

boundary ðpÞ of the system is denoted by Δxk,S. The length S
is the time-dependent distance from the interface to the right
boundary of the system, see Figure 1. In this context, it is worth
mentioning that the mole fraction of component k decreases
monotonically from the interface to the right boundary of the
system. The mole fraction difference Δxk,S is a parameter that
is proportional to the distance of the system from equilibrium,
that is, the dissolution process is promoted by positive values
of Δxk,S.

At constant pressure and temperature the total Gibbs energyG
of the system is given by

G ¼
XΦ
φ¼1

XL
l¼1

nφl μ
φ
l (17)

Phases are denoted by φ, where Φ is their total number.
Various constituents l of total number L may be present in
the phases φ; nφl and μφl represent the molar amount and the
chemical potential of constituent l in solution phase φ, respec-
tively. The mathematical expressions of the chemical potentials
μφl are functions of temperature T and composition, where the
latter is defined by the mole fractions xφl of the constituents l
of phase φ.

As discussed, for example, in ref. [29] or [30], the equilibrium
conditions for a closed system at constant temperature and pres-
sure are: 1) The chemical potential of every component in the
systemmust be equal in all phases and must be spatially constant
constrained by mass balances. 2) The Gibbs phase rule must be
satisfied.

The mass balance constraints forM-independent components
k are defined as

bk �
XΦ
φ¼1

XL
l¼1

aφl,kn
φ
l ¼ 0; k ¼ 1, 2, : : : ,M (18)

where bk is the total amount of the component k in the system.
The elements of the stoichiometric matrix are denoted as aφl,k. The
Lagrangian ℒðn, λÞ of the optimization problem follows as

ℒðn, λÞ ¼
XΦ
φ¼1

XL
l¼1

nφl μ
φ
l þ

XM
k¼1

λk bk �
XΦ
φ¼1

XL
l¼1

aφl,kn
φ
l

 !
(19)

where λk are the Lagrange multipliers for the mass balance con-
straints and λ denotes the vector containing all Lagrange multi-
pliers λk. The entries of the vector n are the molar amounts nφl of
the constituents l. The Lagrange multipliers λk have a physical
meaning as they represent the chemical potentials of the compo-
nents of the system.

According to the first equilibrium condition provided earlier,
these chemical potentials λk have to be equal for each component
in all stable phases at equilibrium. This becomes very clear when
looking at the partial derivatives of the Lagrangian with respect to
nφl , see Equation (20). In addition, also charge neutrality and
other constraints can be taken into account; however, this is
not within the scope of this work. It can be easily seen that
the solution for the minimum of the Lagrangian,
Equation (19), also corresponds to the minimum of the Gibbs
energy function, Equation (17). To find the minimum of the
Lagrangian, the derivatives of the Lagrangian with respect to
all variables (in this case nφl and λk) must be performed and
set to zero

∂ℒðn,λÞ
∂nφl

� �
nφj 6¼l , λ

¼ μφl �
XM
k¼1

λka
φ
l,k ¼ 0 (20)

∂ℒðn,λÞ
∂λk

� �
λj 6¼k , n

¼ bk �
XΦ
φ¼1

XL
l¼1

aφl,kn
φ
l ¼ 0 (21)

This results in a set of equations which can be solved itera-
tively, for example, via a Newton–Raphson procedure. The root
of the system of equations corresponds to the phase composi-
tions with minimum Gibbs energy. Furthermore, only solutions
with positive values for the molar amounts of all stable substan-
ces have a physical meaning ðnφl > 0Þ. On the one hand, it is
possible that the molar amount of a phase becomes negative dur-
ing an iteration step. In this case, the phase is removed from the
set of stable phases by the Gibbs energy minimization algorithm.
On the other hand, a phase that has not been considered as stable
in previous iteration steps becomes stable at the current iteration
in case that μφl <

PM
k¼1 λka

φ
l,k holds. Consequently, this phase φ is

added to the set of stable phases for the next iteration step.
A flowchart representing the algorithm with the crucial calcula-
tion steps is shown in Figure 3.

Let us now consider the interface in a system, where a solid
particle consisting of a single constituent is dissolving in a mul-
ticomponent liquid. The equilibrium at this interface can be cal-
culated by minimizing the Gibbs energy subjected to the
constraint

μsolid �
XM
k¼1

λkasolidk ¼ 0 (22)

where μsolid denotes the chemical potential of the solid phase.
Additionally, the amount of solid nsolid is kept zero

www.advancedsciencenews.com
l

www.steel-research.de

steel research int. 2022, 93, 2200056 2200056 (4 of 11) © 2022 The Authors. Steel Research International published by Wiley-VCH GmbH

 1869344x, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/srin.202200056 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [04/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.steel-research.de


nsolid ¼ 0 (23)

to find the liquidus composition.
These thermochemical calculations are performed using a

newly developed Gibbs energy minimization algorithm in com-
bination with an in-house thermochemical database built on the
modified quasi-chemical model for the description of the liquid
phase.[31–43] For a deeper discussion on the Gibbs energy mini-
mization method, see, for example, refs. [29,30,44–49]. There
also exist a number of commercial implementations of Gibbs
energy minimization algorithms, including refs. [26,50,51].

3. Results and Discussion

3.1. Parameter Studies

In a first step, a simulated mole fraction profile around a spheri-
cal particle of constant size is compared to the analytical solution,
which can be found in Glicksman.[28]

xðr, tÞ ¼ R
r
erfc

r � R

2
ffiffiffiffiffi
Dt

p
� �

(24)

The results obtained from the numerical model and the ana-
lytical solution, Equation (24), for different diffusion times are

shown in Figure 4. The analytical solution, however, is only valid
for an immobile interface, that is, the position R is constant. In
this case, R set to the arbitrary value of 10 μm for the following
calculations. Furthermore, Equation (24) holds only for infinitely
large systems. To approximate Equation (24) by using the earlier-
described finite-difference scheme, the system size p is set to a
sufficiently high value, here p ¼ 10 ⋅ R ¼ 100 μm. As can be seen
in Figure 4, the numerically obtained profiles approximate the
analytical solution calculated for different times t. The numerical
model seems to work well for an immobile interface and is
applied to a moving interface in the following section.

The maximum mole fraction difference in the melt Δxk,S, the
system size p, and the diffusion coefficient D influences the dis-
solution profile of spherical particles. The effect of these param-
eters on the dissolution kinetics is investigated via the following
case studies. In each case, the time-dependent evolution of the
particle radius R is calculated where R0 is the initial radius, that
is, the radius at the beginning of the dissolution process.

In the following, the influence of the diffusion coefficientD on
the total dissolution time is investigated numerically. It should be
noted that within the context of this case study, the dissolution
process is simplified by assuming that the kinetics is controlled
only by the diffusion of one component in the liquid. The starting
radius R0 is equal for each case and the time is normalized using
the total dissolution time of a reference case tref0 with the diffu-
sion coefficient D ¼ D0 resulting in a normalized time t̃ ¼ t=tref0 .
As expected, higher diffusion coefficients result in a faster dis-
solution of the spherical particle, see Figure 5. In addition,
another time normalization is introduced, where time is normal-
ized with the total dissolution time t0 of the individual process,
resulting in a normalized time t ¼ t=t0. Then, each dissolution
ends at t ¼ 1.

The influence of the diffusion coefficient on the dissolution
profile is presented in Figure 6. It is evident that all dissolution
profiles are self-similar in the case that only the diffusion coeffi-
cient is changed.

Figure 4. Numerical and analytical solution of Equation (24) for a spheri-
cal particle with an immobile interface at R ¼ 10 μm at different times
t ¼ 50 s, t ¼ 100 s, t ¼ 150 s. The diffusion coefficient is set to
D ¼ 1 � 10�12m2 s�1.

Figure 3. A flowchart representing the Gibbs energy minimization algo-
rithm that is used to calculate the boundary conditions at the interface.
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The influence of the maximum mole fraction difference Δxk,S
in the melt on the dissolution kinetics is presented in Figure 7.
The system size is assumed to be p ¼ 10 ⋅ R0 and the diffusion
coefficient is set to the constant value D ¼ 1� 10�12 m2 s�1.
The initial particle radius R0 is the same for all cases investigated.
The normalization of the radius is performed by dividing the cur-
rent radius R by the initial radius R0. Time is normalized by
dividing the actual time t by the total dissolution time tref0 of a
reference case with Δxk,S ¼ 0.13. The relative particle size
R=R0 is plotted versus normalized time t̃ in Figure 7. The kinetics
of the dissolution of the particle is enhanced with increasing
Δxk,S values.

Whereas the accelerating effect of higher Δxk,S with normal-
ized time t̃ is demonstrated by using the first normalization
(see Figure 7), the differences in the dissolution profile are
emphasized by using the second normalization with t ¼ t.
The influence of the maximum mole fraction difference Δxk,S
in the melt on the shape of the dissolution profile is shown
in Figure 8. It is evident that Δxk,S does not only influence

the total dissolution time of the particle (Figure 7), but has also
a strong impact on the curvature of the dissolution profile, see
Figure 8. Complementary to the results mentioned earlier,
the mole fraction profiles at t ¼ 0.5 for the different Δxk,S �
values are presented in Figure 9. Increasing Δxk,S � values lead
to a faster dissolution and the mole fraction profiles in the melt
become more pronounced.

The impact of the system size, defined by p, on the dissolution
is shown in Figure 10. The case with a system size p ¼ 10 ⋅ R0 is
chosen as the reference case for calculating t̃. The dissolution
kinetics is increasingly suppressed with decreasing system size
as the bulk concentration of the diffusing component in the slag
rises more rapidly; effectively resulting in a smaller gradient of
the mole fraction of the dissolving component in the melt. The
total dissolution time is more than twice as high for a system that
is 2.75 times the particle radius compared to the total dissolution

Figure 5. Influence of the diffusion coefficient on the dissolution kinetics.
The radius, maximummole fraction difference in the melt and system size
are set to the same values for each case.

Figure 6. Self-similar dissolution profiles in the case that only the diffusion
coefficient is changed. The radius, maximum mole fraction difference in
the melt and system size are set to the same values for each case.

Figure 7. Influence of the maximum mole fraction difference in the melt
on the dissolution. The radius at the beginning of the dissolution, diffusion
coefficient, and system size are set to the same values for each case. Time
is normalized by the total dissolution time of a reference case, here
Δxk,S ¼ 0.05.

Figure 8. Influence of the maximum mole fraction difference in the melt
on the dissolution profile. Time is normalized by the total dissolution time
of each individual case.
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time for a system size that is 10 times the starting particle radius.
The system size has also an effect on the curvature of the disso-
lution profile. The normalized radius R=R0 with respect to nor-
malized time t shrinks strongly at the beginning of the
dissolution process for small systems. In the later stages, the
shrinkage of the radius is less pronounced in smaller systems
compared to larger systems (see Figure 11).

It is illustrated via the previously discussed case studies that
the dissolution profile of spherical particles is heavily influenced
by the boundary conditions imposed on the system. Hence, the
curvature of the dissolution profile should not solely be discussed
in terms of the mathematical approximations of the dissolution
problem as seems to be common practice for oxide particle dis-
solution inmetallurgical slags. Moreover, the presented case stud-
ies emphasize the flexibility that comes with the finite-difference
multicomponent diffusion scheme in combination with the
previously discussed Gibbs energy minimization method. In the

following section, data from experimental oxide particle dissolu-
tion studies are used to validate the presented dissolution model.

3.2. Dissolution of Lime and Silica Inclusions in
Metallurgical Slags

Dissolution mechanisms of lime and CaO-containing additives
in molten oxides were investigated experimentally in the past
in various works, for example, refs. [10,19,52–61]. In addition,
the formation of a boundary layer around the lime particle during
dissolution is reported in several works, for example,
refs. [19,53,60]. The dominant boundary phase has been identi-
fied as dicalcium silicate 2CaO·SiO2(C2S) with a melting point of
around 2130 °C. The formation of C2S around the lime particle
slows down the dissolution. Generally, two dissolution mecha-
nisms of lime can be identified: 1) Direct dissolution, where
CaO reacts directly with liquid slag. 2) Indirect dissolution, which
is characterized by the reaction of lime with the liquid slag
through an intermediate phase (C2S).

Direct dissolution of CaO is preferred during steelmaking
compared to the relatively slow kinetics of the indirect disso-
lution process. Thus, it is important to identify those compo-
sition and temperature ranges, where indirect dissolution is of
minor importance for the overall dissolution process. Guo
et al.[19,62] investigated the dissolution of lime particles in vari-
ous slag systems via HT-LSCM under static conditions. They
observed the formation of an intermediate solid phase at the
interface of the lime particle in CaO–Al2O3–SiO2 slag systems
at a certain transformation stage. The observed intermediate
solid phase has been identified as the C2S phase. The C2S
phase is reported to grow up rapidly to a maximum thickness.
After reaching the point of maximum thickness, the C2S phase
dissolves into the molten slag until it disappears. Further
experimental findings are presented in Sun et al.[63] for the dis-
solution of a lime particle in liquid slag at 1480 °C. These exper-
imentally observed dissolution kinetics are compared to the
numerical results for the dissolution of a spherical particle
in this work. The composition at the interface is calculated
by means of Gibbs energy minimization as described earlier.
The chemical diffusion coefficients Dk,j for multicomponent

Figure 9. The mole fraction profile of a dissolving particle with starting
radius of 35 μm at t ¼ 0.5 for different maximummole fraction differences
in the melt.

Figure 10. Influence of the system size p on the dissolution profile. The
starting radius at the beginning of the simulation, diffusion coefficient, and
maximum mole fraction difference in the melt are set to the same values
for each case.

Figure 11. Influence of the system size on the dissolution profile.

www.advancedsciencenews.com
l

www.steel-research.de

steel research int. 2022, 93, 2200056 2200056 (7 of 11) © 2022 The Authors. Steel Research International published by Wiley-VCH GmbH

 1869344x, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/srin.202200056 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [04/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.steel-research.de


diffusion (see Equation (16)) are estimated from Liang and
Davis[64] with Al2O3 as the dependent diffusing component.
It has to be remarked that the chemical diffusion coefficients
where measured for slightly different slag constitutions and
temperatures compared to the slag compositions used in the
HT-LSCM experiments (see Table 1). The temperature depen-
dence of the chemical diffusion coefficients is considered via
the well-known Arrhenius ansatz

Dk,jðTÞ ¼ D0
k,j exp � ΔEk,j

NAkBT

� �
(25)

where D0
k,j is a temperature-independent pre-exponential factor

and ΔEk,j denotes the activation energy of diffusion. The
Avogadro constant and the Boltzmann constant are denoted
by NA and kB, respectively. The composition of the liquid phase
is provided in Table 1. The chemical diffusion coefficients
DCaO�CaO, DCaO�SiO2

DSiO2�CaO, and DSiO2�SiO2
used for the sim-

ulation of the lime particle dissolution are given in Table 2, see
ref.[64] as mentioned earlier. The maximum mole fracion dif-
ferences in the melt ΔxCaO;S, ΔxSiO2;S, and ΔxAl2O3 ;S are calcu-
lated by means of the Gibbs energy minimization routine
described in Section 2 and are provided in Table 2. The system
size parameter p is given a sufficiently high value to account for
the experimental conditions where the particle size is small
compared to the system size. With respect to the experimental
observations of Sun et al.,[63] the dissolution process is divided
into the following three stages: 1) The first stage corresponds to
the direct dissolution of lime into liquid slag where diffusion of
the components in the liquid melt control the dissolution rate.
2) The second stage is associated with the assumed immediate
formation and subsequent dissolution of the boundary layer at
the interface of the particle with the surrounding oxide melt.
The dissolution kinetics is strongly retarded during this stage.
Again the diffusion of the components in the liquid slag are
assumed to be the rate determining processes. To this aim,
the diffusion coefficient matrix is altered by multiplication
with a retardation factor α¼ 0.3 in the numerical model. In
this sense, α is a fitting parameter in this model. 3) In the third
and final stages, the remaining C2S-free CaO particle dissolves

in a diffusion-controlled manner, which is simulated by using
the same diffusion coefficients as in the first stage.

The compositions of the slags used in the experimental stud-
ies[13,63,64] are provided in mass fractions wk in Table 1. As men-
tioned earlier, the diffusion coefficients relevant for these slag
compositions were estimated based on the work of Liang and
Davis.[64] As Sun et al.[63] did their work on slightly different slag
compositions, a systematic error in the numerical results is to be
expected. Nonetheless, these slag compositions seem to be close
enough as the numerical results compare well with the experi-
mental data. The solid line in Figure 12 represents the calculated
time-dependent radius of the lime particle during dissolution.
The previously discussed three stages of lime dissolution can
be distinguished clearly by the kinks in the dissolution rate in
Figure 12.

In terms of steel cleanliness, the dissolution of oxides that are
unwanted in the final product is a fundamental process.[65] In
this context, Michelic et al.[13] investigated the dissolution of
oxide inclusions in secondary steelmaking slags via in situ
HT-LSCM experiments. In contrast to the dissolution of CaO-
containing additives, no intermediate boundary phase is formed
during the dissolution of silica particles. Consequently, the dis-
solution of silica particles proceeds via direct dissolution only.
The experimentally observed shrinking behaviour of SiO2 par-
ticles at 1450 °C, taken from Michelic et al.,[13] is simulated by
the sharp-interface multicomponent diffusion model developed
in this work. The composition of the slag used in ref.[13] is given
in Table 1. The chemical diffusion coefficients DCaO�CaO,
DCaO�SiO2

DSiO2�CaO, and DSiO2�SiO2
are estimated from[64] and

are provided together with the maximum mole fraction differen-
ces in the melt ΔxCaO;S, ΔxSiO2 ;S, and ΔxAl2O3;S in Table 3. The

Table 1. Chemical compositions of two different slags (SM04 and 1.1)
where experimental investigations are reported in literature. The slag
composition 7 was used to determine the chemical diffusion coefficients.

Slag wCaO wSiO2
wAl2O3

Reference

SM04 0.267 0.533 0.200 [63]

1.1 0.341 0.546 0.106 [13]

7 0.25 0.60 0.15 [64]

Table 2. The chemical diffusion coefficients, maximummole fraction differences in the melt, and system size for the simulation of lime dissolution in slag
SM04 shown in Figure 12.

DCaO�CaO [m2 s�1] DCaO�SiO2
[m2 s�1] DSiO2�CaO [m2 s�1] DSiO2�SiO2

[m2 s�1] ΔxCaO,S ΔxSiO2, S ΔxAl2O3, S p

3.9� 10�11 0.36� 10�11 �1.9� 10�11 0.8� 10�11 0.21 �0.07 �0.14 20·R0

Figure 12. Dissolution of CaO in CaO–SiO2–Al2O3 slag at 1480 °C. The
global composition of the the system is given in Table 1. The numerical
result is calculated by means of the model parameters provided in Table 2.
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system size parameter p is provided in Table 3. The numerical
results are compared with the experimental data in Figure 13.
The corresponding mole fraction profiles xCaO and xSiO2

during
the dissolution of silica (SiO2) are shown at times t¼ 10, 50, 100,
150, and 200 s in Figures 14 and 15, respectively.

The resulting dissolution curves for both lime and silica
mimic the experimental points, see Figures 12 and 13. In the
case of lime dissolution (see Figure 12), there is no need for
introducing another reaction-controlling mechanism in addition
to diffusion in the case of indirect dissolution where a boundary
phase forms at the interface. The solid line in Figure 13 repre-
senting the calculated time-dependent radius of the silica particle

during dissolution shows the same characteristic curvature as the
experimental results and agrees in terms of total dissolution time
without the need to introduce the numerical correction factor
used in ref. [13]. Thus, it is concluded that the diffusion of com-
ponents in liquid slags is the rate-determining process during
dissolution in multicomponent systems. As the calculated disso-
lution curves mimic the experimentally deduced dissolution
kinetics without the use of any additional fitting parameters, it
can be concluded that for HT-LSCM experiments with small
sample size the effect of convection on the dissolution process
is of minor importance. This most likely holds as long as the
experimental studies using HT-LSCM or other methods do
not include external stirring.

4. Conclusion and Outlook

A flexible sharp-interface multicomponent diffusion model is
applied together with a Gibbs energy minimization algorithm
to numerically describe oxide particle dissolution in oxide melts.
The following conclusions are drawn: 1) Although a purely dif-
fusion controlled process is assumed, the kinetics strongly
depends on the initial and boundary conditions (diffusion coef-
ficient, maximum mole fraction difference in the melt, and sys-
tem size). It is demonstrated that the shape of the dissolution
curve (normalized particle radius versus normalized time) is
highly flexible. 2) The time-dependent radii of shrinking oxide
particles are simulated by means of the sharp-interface multi-
component diffusion model for both direct and indirect dissolu-
tions and compare well with experimental data from HT-LSCM
investigations. 3) Further precisely defined dissolution experi-
ments and corresponding simulations are planned in the future.
Thereby, the understanding of the kinetics of oxide particle

Table 3. The chemical diffusion coefficients, maximummole fraction differences in the melt and system size for the simulation of silica dissolution in slag
1.1 shown in Figure 13.

DCaO�CaO [m2 s�1] DCaO�SiO2
[m2 s�1] DSiO2�CaO [m2 s�1] DSiO2�SiO2

[m2 s�1] ΔxCaO;S ΔxSiO2 ;S ΔxAl2O3 ;S p

5.2� 10�11 �0.14� 10�11 �0.21� 10�11 �0.18� 10�11 0.11 0.13 �0.018 20·R0

Figure 13. Dissolution of silica (SiO2) in CaO–SiO2–Al2O3 slag at 1450 °C.
The global composition of the the system is given in Table 1. The numeri-
cal result is calculated by means of the model parameters provided in
Table 3.

Figure 14. The evolving mole fraction profiles of SiO2 at different times
during the dissolution of silica (SiO2) in CaO–SiO2–Al2O3 slag at 1450 °C.

Figure 15. The evolving mole fraction profiles of CaO at different times
during the dissolution of silica (SiO2) in CaO–SiO2–Al2O3 slag at 1450 °C.
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dissolution in metallurgical slags is expected to be expanded to
various slag compositions and temperature ranges that are rele-
vant to steelmaking processes.
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Svoboda for his meaningful suggestions regarding the numerical treat-
ment of diffusion-driven dissolution processes. The authors gratefully
acknowledge the funding support of K1-MET GmbH, metallurgical com-
petence center. The research programme of the K1-MET competence cen-
ter is supported by COMET (Competence Center for Excellent
Technologies), the Austrian programme for competence centers.
COMET is funded by the Federal Ministry for Climate Action,
Environment, Energy, Mobility, Innovation, and Technology, the Federal
Ministry for Digital and Economic Affairs, the Federal States of Upper
Austria, Tyrol and Styria as well as the Styrian Business Promotion
Agency (SFG) and the Standortagentur Tyrol. Furthermore, the authors
thank Upper Austrian Research GmbH for the continuous support. In
addition to the public funding from COMET, this research project is par-
tially financed by the scientific partners the Chair of Metallurgy and the
Institute of Mechanics of the Montanuniversität Leoben and the industrial
partners Primetals Technologies Austria GmbH, RHI Magnesita GmbH,
voestalpine Stahl GmbH, and voestalpine Stahl Donawitz GmbH.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
diffusion, dissolution of oxide particles, Gibbs energy minimization, phase
transformation, slags, steelmaking

Received: January 19, 2022
Revised: April 8, 2022

Published online: April 28, 2022

[1] P. J. Kreijger, R. Boom, Can. Metall. Q. 1982, 21, 339.
[2] L. Holappa, A. S. Helle, J. Mater. Process. Technol. 1995, 53 177.
[3] S. Seetharaman, Treatise on Process Metallurgy, Elsevier, Amsterdam,

2013.
[4] F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain, P. Wollants,

Appl. Phys. Lett. 2007, 91, 124104.
[5] F. Verhaeghe, S. Arnout, B. Blanpain, P. Wollants, Phys. Rev. E 2006,

73, 036316.
[6] F. Verhaeghe, S. Arnout, B. Blanpain, P. Wollants, Phys. Rev. E 2005,

72, 036308.
[7] F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain, P. Wollants,

J. Appl. Phys. 2008, 103, 023506.
[8] O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley, New

York, 1999.
[9] N. Lindman, D. Simonsson, Chem. Eng. Sci. 1979, 34 31.

[10] L. K. Elliott, J. A. Lucas, J. Happ, J. Patterson, H. Hurst, T. F. Wall,
Energy Fuels 2008, 22, 3626.

[11] R. Sarkar, U. Roy, D. Ghosh, Metall. Mater. Trans. B 2016, 47, 2651.
[12] S. Feichtinger, S. K. Michelic, Y.-B. Kang, C. Bernhard, J. Am. Ceram.

Soc. 2014, 97, 316.
[13] S. Michelic, J. Goriupp, S. Feichtinger, Y.-B. Kang, C. Bernhard,

J. Schenk, Steel Res. Int. 2016, 87, 57.
[14] K. Miao, A. Haas, M. Sharma, W. Mu, N. Dogan,Metall. Mater. Trans.

B 2018, 49, 1612.
[15] B. J. Monaghan, L. Chen, Iron Steel 2006, 33, 323.
[16] B. J. Monaghan, L. Chen, Steel Res. Int. 2005, 76, 346.
[17] J. Liu, M. Guo, P. T. Jones, F. Verhaeghe, B. Blanpain, P. Wollants,

J. Eur. Ceram. Soc. 2007, 27, 1961.
[18] J. Liu, F. Verhaeghe, M. Guo, B. Blanpain, P. Wollants, J. Am. Ceram.

Soc. 2007, 90, 3818.
[19] X. Guo, Z. H. I. Sun, J. van Dyck, M. Guo, B. Blanpain, Ind. Eng. Chem.

Res. 2014, 53, 6325.
[20] M. J. Whelan, Met. Sci. J. 1969, 3, 95.
[21] H. B. Aaron, Met. Sci. J. 1968, 2, 192.
[22] X. Guo, J. Sietsma, Y. Yang, Z. Sun, M. Guo, AIChE J. 2017, 63,

2926.
[23] C. Xuan, W. Mu, J. Am. Ceram. Soc. 2021, 104, 57.
[24] M. Hillert, Metall. Trans. A 1975, 6, 5.
[25] A. Jacot, M. Rappaz, Acta. Mater. 2002, 50, 1909.
[26] J.-O. Anderson, T. Helander, L. Hoglund, P. Shi, B. Sundman,

Calphad 2002, 26, 273.
[27] M. Hillert, B. Sundman, Acta Metall. 1976, 25, 11.
[28] M. E. Glicksman,Diffusion in Solids: Field Theory, Solid-State Principles,

and Applications, Wiley, New York, 2000.
[29] M. Piro, S. Simunovic, T. M. Besmann, B. J. Lewis, W. T. Thompson,

Comput. Mater. Sci. 2013, 67, 266.
[30] H. L. Lukas, S. G. Fries, B. Sundman, Computational Thermodynamics:

The CALPHAD Method, Cambridge University Press, Cambridge and
New York, 2007.

[31] G. Eriksson, P. Wu, M. Blander, A. D. Pelton, Can. Metall. Q. 1994, 33,
13.

[32] T. Hidayat, D. Shishin, S. A. Decterov, E. Jak, Metall. Mater. Trans. B
2016, 47, 256.

[33] T. Hidayat, D. Shishin, S. A. Decterov, E. Jak, Calphad 2017,
56, 58.

[34] T. Hidayat, D. Shishin, S. A. Decterov, E. Jak, J. Phase Equilib. Diffus.
2017, 38, 477.

[35] I.-H. Jung, S. A. Decterov, A. D. Pelton, Metall. Mater. Trans. B 2004,
35, 877.

[36] I.-H. Jung, S. A. Decterov, A. D. Pelton, J. Eur. Ceram. Soc. 2005, 25,
313.

[37] Y.-B. Kang, I.-H. Jung, J. Phys. Chem. Solids 2016, 98, 237.
[38] Y.-B. Kang, I.-H. Jung, Metall. Mater. Trans. B 2017, 48, 1721.
[39] Y.-B. Kang, I.-H. Jung, S. A. Decterov, A. D. Pelton, H.-G. Lee, ISIJ Int.

2004, 44, 965.
[40] S. K. Panda, Z. Cao, I.-H. Jung, J. Am. Ceram. Soc. 2015, 98, 2921.
[41] S. K. Panda, I.-H. Jung, J. Am. Ceram. Soc. 2014, 97, 3328.
[42] D. Shishin, V. Prostakova, E. Jak, S. A. Decterov,Metall. Mater. Trans.

B 2016, 47, 397.
[43] P. Wu, G. Eriksson, A. D. Pelton, J. Am. Ceram. Soc. 1993, 76, 2065.
[44] M. Hillert, Phys. B 1981, 103, 31.
[45] M. Piro, Calphad 2017, 58, 115.
[46] M. Piro, T. M. Besmann, S. Simunovic, B. J. Lewis, W. T. Thompson,

J. Nucl. Mater. 2011, 414, 399.
[47] M. Piro, S. Simunovic, Calphad 2012, 39 104.
[48] W. R. Smith, R.W. Missen, Chemical Reaction Equilibrium Analysis:

Theory and Algorithms, Wiley, New York, 1982.
[49] G. Eriksson, Acta Chem. Scand. 1971, 7, 2651.

www.advancedsciencenews.com
l

www.steel-research.de

steel research int. 2022, 93, 2200056 2200056 (10 of 11) © 2022 The Authors. Steel Research International published by Wiley-VCH GmbH

 1869344x, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/srin.202200056 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [04/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.steel-research.de


[50] S.-L. Chen, S. Daniel, F. Zhang, Y. A. Chang, X.-Y. Yan, F.-Y. Xie,
R. Schmid-Fetzer, W. A. Oates, Calphad 2002, 26, 175.

[51] C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson,
A. E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon,
A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-
A. van Ende, Calphad 2016, 54 35.

[52] E. Cheremisina, J. Schenk, L. Nocke, A. Paul, G. Wimmer, ISIJ Int.
2017, 57, 304.

[53] E. Cheremisina, J. Schenk, L. Nocke, A. Paul, G. Wimmer, Metall.
Mater. Trans. B 2019, 50, 1269.

[54] T. Deng, Du Sichen, Metall. Mater. Trans. B 2012, 43, 578.
[55] T. Deng, B. Glaser, D. Sichen, Steel Res. Int. 2012, 83, 259.
[56] S.-Y. Kitamura, ISIJ Int. 2017, 57, 1670.
[57] Z. S. Li, M. Whitwood, S. Millman, J. van Boggelen, Ironmaking

Steelmaking 2014, 41, 112.

[58] J. Martinsson, B. Glaser, Du Sichen,Metall. Mater. Trans. B 2018, 49,
3164.

[59] N. Maruoka, A. Ishikawa, H. Shibata, S.-Y. Kitamura, High Temp.
Mater. Proc. 2013, 32, 15.

[60] M. Matsushima, S. Yadoomaru, K. Mori, Y. Kawai, ISIJ Int. 1977, 17,
442.

[61] Y. Satyoko, W. E. Lee, Br. Ceram. Trans. 1999, 98, 261.
[62] M. Guo, Z. Sun, X. Guo, B. Blanpain, Proc. of the 2013 Int. Symp.

Liquid Metal Processing & Casting, Austin, Texas, USA 2013,
pp. 101–107.

[63] Z. H. I. Sun, X. Guo, J. van Dyck, M. Guo, B. Blanpain, AIChE J. 2013,
59, 2907.

[64] Y. Liang, A. M. Davis, Geochim. Cosmochim. Acta 2002, 66, 635.
[65] B. A. Webler, P. C. Pistorius, Metall. Mater. Trans. B 2020,

51, 2437.

www.advancedsciencenews.com
l

www.steel-research.de

steel research int. 2022, 93, 2200056 2200056 (11 of 11) © 2022 The Authors. Steel Research International published by Wiley-VCH GmbH

 1869344x, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/srin.202200056 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [04/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.steel-research.de

	Numerical Treatment of Oxide Particle Dissolution in Multicomponent Slags with Local Gibbs Energy Minimization
	1. Introduction
	2. Theory
	2.1. Geometry of the System, Phase Transformation, and Diffusion
	2.2. Thermochemical Calculations

	3. Results and Discussion
	3.1. Parameter Studies
	3.2. Dissolution of Lime and Silica Inclusions in Metallurgical Slags

	4. Conclusion and Outlook


