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A B S T R A C T   

Heat capacity data for compounds located in the binary CaO–SiO2, CaO–Al2O3 and MgO–Al2O3 systems are fitted 
by Debye-Einstein integrals. Starting from the fitted heat capacities, the standard values of the thermodynamic 
functions of these compounds are calculated. In almost all cases investigated, the derived standard entropies are 
within the uncertainties of the values provided in literature. The Debye-Einstein coefficients obtained in this 
thermodynamic assessment can be used to approximate the heat capacities, enthalpies and entropies of these 
compounds in the temperature range from 0 to 298.15 K.   

1. Introduction 

CaO, SiO2, MgO and Al2O3 are typical components of metallurgical 
slags [1]. The thermodynamic properties of solid compounds in molten 
oxides are key data to describe metallurgical processes in the basic ox-
ygen furnace (BOF). The question arises which solid compounds are 
stable in the slag system at a certain temperature and composition. The 
occurrence of solid phases and their physical properties influence the 
steelmaking process decisively as demonstrated by the following 
examples:  

• Solid Ca2SiO4 enhances e.g. the capability of the slag to absorb 
phosphor from the liquid pig iron [2]. 

• Cheremisina et al. [3] discussed the effect of solid chemical com-
pounds on dolime dissolution and the formation of e.g. wüstite 
phases with increasing MgO content in steelmaking slags.  

• The thermodynamic properties of the solid compounds determine 
the dissolution kinetics of the slag forming additives. In this context 
e.g. Guo et al. [4] investigated the dissolution of CaO particles in 
CaO–SiO2–Al2O3–MgO slags using high temperature confocal 
laser-scanning microscopy. Equilibrium calculations can supply in-
formation on stability ranges of those solid phases that hinder the 
dissolution process.  

• Crystalline solids present in steelmaking slags heavily influence the 
viscosity and rheological properties of the slags, see e.g. Ilyushechkin 
and Kondratiev [5]. In many cases it is advantageous to avoid solid 
phases in the slag system in order to keep the viscosity of the slag 
low. Thermodynamic calculations allow us to predict those slag 
compositions that remain liquid at the temperatures of interest. 

A knowledge about the equilibrium phases present during metal-
lurgical processes is a prerequisite for modeling the evolution of the 
volume fraction of these phases in time. In this context Gibbs Energy 
Minimization (GEM) conjoined with a thermodynamic database has 
become a valuable numerical tool to predict the stability ranges of phase 
equilibria [6]. In particular, the quality and consistency of a thermo-
dynamic database is crucial for thermodynamic predictions. As standard 
entropies and reference enthalpies are fundamental ingredients for 
every thermodynamic database, a sound description of the low tem-
perature properties of the elements or compounds is required. The 
temperature dependent molar heat capacity at constant pressure C∘

p,m(T)
is a key quantity that can be directly measured by calorimetry. All 
temperature dependent thermodynamic properties like the molar Gibbs 
energy G∘

m(T), molar enthalpy H∘
m(T) and molar entropy S∘

m(T) follow 
from molar heat capacities C∘

p,m(T). 
There is an ongoing effort to standardize the approximation of 

thermodynamic functions from 0 K to high temperatures [7–12]. 
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Experimental heat capacity data are frequently approximated by least 
squares optimization tools, where the model parameters are either 
derived from theory or their origin is purely empirical. By means of 
classical thermodynamic databases such as THERMODATA [13] or 
JANAF [14], heat capacities and the related thermodynamic data are 
obtained by fitting experimental data via cubic splines. The results are 
then provided by tables listing the values of the above-mentioned 
quantities at certain temperatures. A similar approach is described in 
White and Collocott [15]. Thermodynamic data of pure elements can be 
calculated by using data compilation of Dinsdale [16] where the co-
efficients are of empirical nature. An algorithm for the cubic spline 
approximation is provided by Titov et al. [17]. Their approach allows for 
taking into account low temperature behavior of heat capacities via e.g. 
Debye asymptotes. Purely empirical approaches might induce highly 
correlated fit coefficients if the model is not carefully selected. As an 
example in Ref. [18] up to 5 fit coefficients are used to fit a polynomial 
to 7 datapoints in the temperature range between 5 K and 7.5 K, leading 
to a total amount of 60 fit parameters for describing heat capacities in 
the temperature range between 5 K and 320 K. 

Alternatively, the heat capacity is modelled by using physically 
meaningful approaches, where the contribution of phonons, and if 
relevant, also the contribution of electrons, magnons, and of Schottky 
anomalies to the heat capacity is considered [19]. Due to these contri-
butions of different nature, it turns out to be difficult to describe the 
temperature dependence of the molar heat capacities by the Debye 
temperature only with acceptable residuals over the temperature range. 
In an early attempt Gmelin [20] fitted molar heat capacities C∘

p,m(T) by a 
temperature dependent Debye-temperature θD(T). By using this 
approach the obtained fits might be rather satisfying in terms of accu-
racy of the approximation; but the Debye-temperature loses its original 
physical meaning and there is a new set of fit coefficients required to 
describe the temperature dependent function of the Debye-temperature 
θD(T). Nevertheless, the demand for physically meaningful heat capacity 
models were stressed in the past within the Ringberg meetings in 1995 
[7]. These efforts are intensified in the course of the currently ongoing 
SGTE (3rd generation calphad) modelling, see e.g. Refs. [11], [12], 
[21–23]. Roslyakova et al. [24] discussed a model for describing the 
heat capacity of pure elements from high temperatures down to the 
absolute zero by using Debye or Einstein models for low temperatures 
(below room temperature). The thermodynamic coefficients (Debye or 
Einstein temperatures) used by Roslyakova et al. [24] to describe the 
thermodynamic data of pure elements have a physical meaning. How-
ever, it is in most cases not possible to describe the temperature 
dependence of the molar heat capacities of pure elements by one Debye 
or Einstein temperature only with acceptable residuals over the tem-
perature range between 0 K and room temperature. This task becomes 
even more unrealistic in case of compounds with many atoms per for-
mula unit. Nevertheless, compared to empirical approaches it is shown 
in Ref. [25] that the number of fit parameters can be strongly reduced by 
using a physically based model without losing much if any accuracy of 
the thermodynamic functions at elevated temperatures. 

State of the art low temperature calorimetry [26] allows for 
measuring heat capacities of solids down to a few K with an accuracy of 
0.5–0.8% as discussed e.g. by Dachs and Bertoldi [27]. As a further 
example the reader is referred to the work of Morishita and Navrotsky 
[28]. Nevertheless, heat capacity data are often not available for tem-
peratures below 50 K. In those cases, it is essential to approximate heat 
capacities by functions that allow for realistic extrapolations down to 0 
K. 

From a thermodynamic perspective the following features of heat 
capacity models are desirable:  

• Depending on the purpose the approximation of experimental data 
should be sufficiently accurate.  

• Fit coefficients should have a clear physical meaning.  

• Highly correlated fit coefficients and therefore overfitting should be 
avoided.  

• The model should allow for a physically realistic extrapolation into 
temperature ranges where there are no experimental data available.  

• Fit coefficients should always be provided with their uncertainties. 

In this work heat capacities in the temperature range from 0 K to 300 
K are approximated by a model that accounts for these requirements. 
The thereby obtained heat capacity functions for compounds in the bi-
nary systems CaO–SiO2, CaO–Al2O3 and MgO–Al2O3 are then used to 
calculate the standard entropies and enthalpies of those compounds. 

2. Theory 

Based on the pioneering work of Kelley and King [29], Gamsjäger 
and Wiessner [25] approximated the experimental heat capacities of a 
variety of minerals, from several molybdates to cerussite, smithsonite, 
different hollandites and an SiO2-polymorph by Debye-Einstein in-
tegrals. It turned out that a reliable thermodynamic description between 
0 and 300 K can be obtained for these minerals in case that no phase 
transformations occur in this temperature range. This Debye-Einstein 
integral approach is also used in this work and is introduced and moti-
vated in the following:  

• Einstein suggested that p identical quantum harmonic oscillators 
contribute to the heat capacity of a solid under constant volume C∘

V. 
In three dimensions p is replaced by 3p therefore there are three 
modes per oscillator considered [30].  

• Debye refined the Einstein model by considering atomic interactions 
in the crystal. The quantum harmonic oscillators in the Debye-model 
are thought to vibrate in a coupled way in contrast to the indepen-
dent oscillators in the Einstein model.  

• Following Kelley and King [29], the heat content of a compound with 
N-atoms per formula unit may be described by considering the sum 
of three Debye-functions of characteristic temperatures θD1, θD2 and 
θD3 and the sum of 3(N− 1) Einstein energy functions of the 
Einstein-temperatures θE’s: 

C∘
V =

1
3

(
∑3

i=1
D
(

θDi

T

)

+
∑3(N− 1)

i=3
E
(

θEi

T

))

, (1)  

where the Debye-Integral D
(

θDi
T

)

is given by 

D
(

θDi

T

)

= 9R(T/θDi)
3
∫θDi/T

0

y4exp(y)[exp(y) − 1 ]− 2dy, (2)  

and the Einstein terms E1

(
θE1
T

)

and E2

(
θE2
T

)

are 

Ei

(
θEi

T

)

= 3R
(

θEi

T

)2

exp
(

θEi

T

)[

exp
(

θEi

T

)

− 1
]− 2

. (3) 

The characteristic temperatures θD1, θD2 and θD3 are used as mean 
values for three linear independent directions. In addition, the heat 
capacity under constant volume is considered equal to the heat capacity 
under constant pressure. For solids at low temperatures (below room 
temperature) this is generally considered to be a close approximation to 
reality. 

Reliable values for the heat capacity, standard entropy and enthalpy 
can be obtained by fitting the data for the whole temperature range 
between almost 0 K and 300 K by a simple Debye-Einstein integral. The 
approach discussed by Kelley and King [29] can be slightly modified by 
the introduction of the pre-factors m, n1 and n2, see also Wu et al. [31]: 
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C∘
p,m(T) = mD

(
θD

T

)

+ n1E1

(
θE1

T

)

+ n2E2

(
θE2

T

)

(4) 

The six parameters used in the fitting procedure are the Debye- 
temperature θD, the two Einstein-temperatures θE1, θE2 as well as the 
pre-factors m, n1 and n2. 

For certain compounds (typically with a low number of atoms per 
formula unit) an even simpler approach can be considered, using only 
one Einstein-term and therefore reducing the number of fit parameters 
to four: 

C∘
p,m(T) = mD

(
θD

T

)

+ nE
(

θE

T

)

. (5) 

The Debye-Einstein-integral approach is also very useful in extrap-
olating heat capacity values to lower temperature ranges as was shown 
by Gamsjäger et al. [32]. This feature is extensively used in this work as 
heat capacity data below 50 K could not be obtained for most of the here 
discussed compounds. The temperature dependent thermodynamic 
functions entropy S∘

m(T) and enthalpy 
(
H∘

m(T) − H∘
m(0K)

)
can be calcu-

lated with 

S∘
m(T) =

∫T

0

C∘
p,m

(
T
)

T
dT (6)  

and accordingly 

H∘
m(T) − H∘

m(0K) =

∫T

0

C∘
p,m

(
T
)

dT. (7) 

In this work Eq. (6) and Eq. (7) are used to calculate the standard 
entropy S∘

m(298.15K) and enthalpy H∘
m(298.15K) using Maple 2020 [33] 

with H∘
m(0K) = 0. The derived values for the standard entropy and 

enthalpy are then compared to values found in the literature (see Table 1 
- Table 12b). 

3. Results and discussion 

3.1. Compounds in the CaO–SiO2 system 

Schmetterer and Masset [34] discussed problems in their review 
paper regarding the availability of thermodynamic data of compounds 
in the CaO–SiO2 system. However, compounds in the CaO–SiO2 system 
are key materials in many geological investigations and are of great 
importance for steelmaking and in the refractory industry. Hence, 
various thermodynamic assessments have been conducted in order to 
describe the CaO–SiO2 system, see e.g. Hillert et al. [35,36] and Eriksson 
et al. [37]. Belmonte et al. [38] investigated thermodynamic and ther-
mophysical properties of compounds and melts in the CaO–SiO2 system 
up to high pressures and temperatures using an ab initio-assisted 
approach. Berman and Brown [39] used heat capacity data from King 
[40] for their assessments. However, they based their analysis solely on 
adiabatic calorimetric data above 250 K, as they were exclusively 

interested in a temperature description above room temperature. Xiong 
et al. [41] investigated the thermal expansivity and compressibility of 
larnite (β-Ca2SiO4) at elevated temperatures and pressures. Further-
more, they calculated the constant pressure heat capacity of larnite and 
its standard entropy S∘

m(298.15K) using a model based on the vibrational 
density of states theory combined with a quasi-harmonic approximation. 
They compared their results to the low temperature heat capacity 
measurements provided by Todd [42]. These measurements [42] are 
apparently the only low temperature data available in the open litera-
ture for larnite. Aronson et al. [43] examined the magnetic excitations 
and heat capacity of fayalite; and estimated the phonon contribution to 
the heat capacity by using heat capacity data of γ-Ca2SiO4 from King 
[40]. This is another hint for the prominence of these heat capacity data 
and to the authors’ knowledge [40] is the only source providing low 
temperature heat capacity data for γ-Ca2SiO4. It seems that high accu-
racy data of measured heat capacities in the low as well as in the high 
temperature range for compounds of interest in the field of metallurgy 
and refractory design are still very rare or even lacking. 

In this work experimental heat capacities for γ-Ca2SiO4 and Ca3Si2O7 
are taken from King [40] and for β-Ca2SiO4 and Ca3SiO5 from Todd [42]. 
The data are fitted using the six-parameter-fit provided in Eq. (4). The fit 
coefficients of the heat capacities are obtained by means of the built-in 
Levenberg-Marquardt algorithm of Origin Pro 2019 [44] and are sum-
marized in Tables 1–6. Experimental heat capacity data for most of the 
considered compounds are only available for temperatures higher than 
50 K. Heat capacity data are extrapolated into the ultra-low temperature 
range down to absolute zero by means of the Debye-Einstein integral 
approach. 

The measured data and their corresponding Debye-Einstein integral 
fit for γ-Ca2SiO4 are depicted in Fig. 1a. The relative residuals of the 
computed heat capacity values from the measured data are calculated 
and depicted in Fig. 1b. The maximum relative residual in the case of 
γ-Ca2SiO4 is clearly below ±0.5%. The sum of the pre-factors (m+ n1 +

n2) deviates by approximately 8.1% from the number of atoms per 
formula unit for γ-Ca2SiO4 (see Table 1). The calculated enthalpies 
H∘

m(298.15K) and standard entropies S∘
m(298.15K) for the compounds of 

the CaO–SiO2 system are reasonably close to the values found in open 
literature, as can be seen in Table 1 – Table 6. 

The temperature dependent uncertainties δC∘
p,m(T),

δS∘
m(T) and δH∘

m(T) in the molar heat capacities C∘
p,m(T), molar entropies 

S∘
m(T)and molar enthalpies H∘

m(T) are calculated using 

δA(T) = A( θD − δθD , θE1 − δθE1 ,θE2 − δθE2 ,m+δm,n1+δn1 ,n2+δn2 , T)
2 −

[A( θD + δθD, θE1 + δθE1 , θE2 + δθE2 ,m − δm, n1 − δn1, n2 − δn2,T) ]
2

,
(8)  

where A(T) is the thermodynamic function of interest, e.g. C∘
p,m(T), 

S∘
m(T)or H∘

m(T). The mean value of the uncertainty δA(T) follows from 
the lowest possible value and the highest possible value of the thermo-
dynamic function A within the uncertainties of the parameters, Eq. (8). 
This procedure might lead to unusually high uncertainties in the ther-
modynamic functions; nonetheless, it seems to be a safe approach as it 

Table 1 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the γ-Ca2SiO4 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  359.6 ± 5.1 m 2.960 ± 0.089 
θE1/K  598.2 ± 16 n1 2.707 ± 0.043 
θE2/K  1432 ± 80 n2 1.946 ± 0.096 
Atoms in formula unit 7 m+n1+n2 

range of (m+n1+n2) 
7.613 
7.385–7.841   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [54] 

S∘
m(298.15K)/Jmol− 1K− 1  120.4 ± 6.0 120.5 ± 0.8 – – 120.499 

H∘
m(298.15 K)/kJmol− 1  20.48 ± 0.98 – – – –  
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takes the highest possible deviation from the calculated quantity into 
account [25]. 

In the case of β-Ca2SiO4 the measured data and their corresponding 
Debye-Einstein integral fit are depicted in Fig. 2a. The relative residuals 
from the measured data are calculated and are given in Fig. 2b. The sum 
of the pre-factors (m+ n1 + n2) approximately deviates by 5% from the 
number of atoms per formula unit. The characteristic temperatures θD, 
θE1, θE2 together with the pre-factors m, n1 and n2 are provided in 
Table 2. 

The Debye-Einstein integral fit with the extrapolation to absolute 

zero for Ca3SiO5 is given in Fig. 3a. The relative residuals from the 
measured data points are below 0.25% for data higher than 60 K as 
shown in Fig. 3b. It is worth noting that no error limits of the measured 
data are available in the original publication [42]. However, the 
Debye-Einstein integral fit approximates the experimental heat capac-
ities convincingly. The characteristic temperatures θD, θE1, θE2 together 
with the pre-factors m, n1 and n2 are provided in Table 3. The deviation 
of the sum of the pre-factors from the number of atoms per formula unit 
of Ca3SiO5 is around 9.5%. 

The Deybe-Einstein integral fit in the case of Ca3Si2O7 is provided in 

Table 2 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the β-Ca2SiO4 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  353.9 ± 8.3 m 3.233 ± 0.165 
θE1/K  581.2 ± 34 n1 2.317 ± 0.081 
θE2/K  1317 ± 177 n2 1.794 ± 0.092 
Atoms in formula unit 7 m+n1+n2 

range of (m+n1+n2) 
7.344 
7.006–7.682   

This Work Hemingway [51] Todd [42] NIST - JANAF [53] Landolt-Börnstein [54,55,56] 

S∘
m(298.15K)/Jmol− 1K− 1  127.0 ± 12 – 127.6 ± 0.8 – – 

H∘
m(298.15 K)/kJmol− 1  21.30 ± 1.94 – – – –  

Table 3 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the Ca3SiO5 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  346.7 ± 7.1 m 3.931 ± 0.171 
θE1/K  572.1 ± 20 n1 3.722 ± 0.077 
θE2/K  1404 ± 111 n2 2.200 ± 0.150 
Atoms in formula unit 9 m+n1+n2 

range of (m+n1+n2) 
9.853 
9.455–10.251   

This Work Hemingway [51] Todd [42] NIST - JANAF [53] Landolt-Börnstein [54] 

S∘
m(298.15K)/Jmol− 1K− 1  167.4 ± 12 168.6 ± 0.3 168.6 ± 1.3 – 168.615 

H∘
m(298.15 K)/kJmol− 1  28.27 ± 1.8 – – – –  

Table 4 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the Ca3Si2O7 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  335.4 ± 14 m 4.820 ± 0.413 
θE1/K  572.4 ± 42 n1 4.584 ± 0.195 
θE2/K  1435 ± 205 n2 3.536 ± 0.522 
Atoms in formula unit 12 m+n1+n2 

range of (m+n1+n2) 
12.94 
11.81–14.07   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [54,55,56] 

S∘
m(298.15K)/Jmol− 1K− 1  209.9 ± 29 210.6 ± 2.9 – – – 

H∘
m(298.15 K)/kJmol− 1  35.24 ± 4.7 – – – –  

Table 5 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the CaO phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  531.1 ± 5.5 m 1.762 ± 0.037 
θE1/K  906.3 ± 63 n1 0.349 ± 0.025 
Atoms in formula unit 2 m+n1 

range of (m+n1) 
2.111 
2.049–2.173 

T3-fit, Eq. (9) a = 1.913 × 10− 5 ± 5.8 × 10− 8     

This Work Hemingway [51] King (1955) [52] NIST - JANAF [53] Landolt-Börnstein [54] 

S∘
m(298.15K)/Jmol− 1K− 1  38.28 ± 1.6 38.1 ± 0.4 – 38.212 38.1 

H∘
m(298.15 K)/kJmol− 1  6.74 ± 0.27 – – 6.749 –  
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Fig. 4a and the relative residuals from the measured data are depicted in 
Fig. 4b and are below 0.5% for almost all data points. The deviation of 
the sum of pre-factors from the number of atoms per formula unit is 
below 8% (see Table 4). 

In the case of CaO no original measured low temperature heat ca-
pacity data could be found by the authors except a work of Parks and 
Kelley [45] from 1926. They measured heat capacities of CaO and other 

oxides for temperatures greater than 86 K. The heat capacity data from 
Gmelin [20] are smoothed and, thus, these data are not regarded as 
original measurements. Thermophysical properties of CaO were recently 
modelled by Deffrennes et al. [12] in the context of 3rd generation 
calphad modelling. They used among others data from Gmelin [20] and 
from ab-initio calculations and described the heat capacities over a very 
large temperature range from 0 K to temperatures above 3000 K. 

Table 6 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the SiO2 (cristobalite) phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  157.3 ± 2.7 m 0.383 ± 0.009 
θE1/K  414.0 ± 6.3 n1 1.067 ± 0.018 
θE2/K  1037 ± 18 n2 1.278 ± 0.015 
Atoms in formula unit 3 m+n1+n2 

range of (m+n1+n2) 
2.728 
2.686–2.77   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [56] 

S∘
m(298.15K)/Jmol− 1K− 1  43.36 ± 1.6 43.4 ± 0.1 – 43.396 43.065 

H∘
m(298.15 K)/kJmol− 1  6.91 ± 0.23 7.04 – 7.037 –  

Fig. 1a. Measured heat capacity data from King [40] and Debye-Einstein in-
tegral fit for γ-Ca2SiO4. 

Fig. 1b. Relative residuals of the Debye-Einstein integral fit for γ-Ca2SiO4.  

Fig. 2a. Measured heat capacity data from Todd [42] and Debye-Einstein in-
tegral fit for β-Ca2SiO4. 

Fig. 2b. Relative residuals of the Debye-Einstein integral fit for β-Ca2SiO4.  
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However, the authors report that the Einstein model was poor for low 
temperatures. 

Due to a lack of experimental low temperature heat capacity data, 
the smoothed data from Ref. [20] are approximated by the 
Debye-Einstein integral fit in this work. In the case of CaO, a 
four-parameter fit, Eq. (5), is chosen for approximating the smoothed 
heat capacity data. The results of the four-parameter fit are shown in 
Fig. 5a and the relative residuals from the data provided by Gmelin [20] 
are provided in Fig. 5b. The parameters θD, θE1, m, n1 are provided 
together with their uncertainties in Table 5. There is a fairly high de-
viation of the Debye-Einstein integral fit from the smoothed values of 
Gmelin [20] at very low temperatures (see insert in Fig. 5a and b). An 
accurate description of the smoothed heat capacity data for CaO in the 
ultra-low temperature range (T < 20 K) can be achieved by a simple 
T3-fit: 

C∘
p,m(T) = aT3, (9)  

with a being a fit parameter. The heat capacity of CaO in the range from 
0 K to 20 K is approximated by the T3 fit and shown in Fig. 5c. 

The somewhat larger residuals at low temperatures do not have a 

relevant impact on the calculation of thermodynamic quantities at 
elevated temperatures. The values for H∘

m(298.15K) and S∘
m(298.15K)

calculated from Eq. (5) are provided together with their uncertainties in 
Table 5. The calculated values agree well with the tabulated data from 
literature. For the approximation of the heat capacity over the temper-
ature range from 0 to 300 K and the calculation of standard values of 
thermodynamic properties using only four fit parameters, the Debye- 
Einstein integral fit, Eq. (5), is sufficient. 

Heat capacity data for the faujasite polymorph of SiO2 were 
approximated by means of the Debye-Einstein integral method in an 
earlier paper [25]. In terms of metallurgical and refractory applications, 
the cristobalite modification of SiO2 is highly relevant. Heat capacity 
measurements of cristobalite are provided e.g. in Refs. [46–50]. In terms 
of low temperature heat capacity measurements of cristobalite, the data 
provided by Ref. [48] seem to be the best choice. The measured heat 
capacity data of cristobalite are approximated by means of Eq. (4) (see 
Fig. 6a and b); although the number of atoms per formula unit in cris-
tobalite is very low, a four-parameter fit, Eq. (5), does not lead to 
physically meaningful results. The fit parameters θD, θE1, θE2, m, n1 and 
n2 together with their uncertainties are provided in Table 6. The insert in 
Fig. 6a shows the Debye-Einstein integral fit in the ultra-low 

Fig. 3a. Measured heat capacity data from Todd [42] and Debye-Einstein in-
tegral fit for Ca3SiO5. 

Fig. 3b. Relative residuals of the Debye-Einstein integral fit for Ca3SiO5.  

Fig. 4a. Measured heat capacity data from King [40] and Debye-Einstein in-
tegral fit for Ca3Si2O7. 

Fig. 4b. Relative residuals of the Debye-Einstein integral fit for Ca3Si2O7.  
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temperature range. The high relative residuals in this temperature re-
gion (see Fig. 6b) originate from the fact that the heat capacity of cris-
tobalite does not follow a strict T3-law. 

3.2. Compounds in the CaO–Al2O3 system 

The CaO–Al2O3 system as a fundamental binary system for metal-
lurgical, environmental and geophysical applications has been thermo-
dynamically assessed mostly with a focus on elevated temperatures, e.g. 
in Refs. [57–62]. The following compounds in the CaO–Al2O3 binary 
system are considered in this work: CaO⋅Al2O3, 12CaO⋅7Al2O3, 
CaO⋅2Al2O3, CaO⋅Al2O3 and 3CaO⋅2Al2O3. The evaluated data are taken 
from King [52] who measured the heat capacity for the mentioned 
compounds in the range of around 50 K–298.16 K; to the knowledge of 
the authors no other data source of low-temperature heat capacity 
measurements is available in the open literature. A six-parameter fit, see 
Eq. (4), is carried out for all compounds in the CaO–Al2O3 system. The 
optimized characteristic temperatures and pre-factors are provided in 
Tables 7–10. The standard entropies S∘

m(298.15K) and the enthalpies 
H∘

m(298.15K) for each compound are calculated by applying Eq. (6) and 
Eq. (7), respectively. The obtained values are compared to literature 

values from various sources in Tables 7–10. The standard entropies 
derived from heat capacities are within the error bounds of the values 
obtained from literature. 

The best fit obtained for CaO⋅2Al2O3 is given in Fig. 7a. It is 
noticeable that no accuracy of the measured data is given by King [52]. 
Nonetheless, the relative residuals of the Debye-Einstein integral fit from 
the measured data are small as shown in Fig. 7b. The relative residuals 
are clearly below 0.5%, except for the data point measured at the lowest 
temperature. The deviation of the sum of the parameters (m+ n1 + n2) 
from the number of atoms per formula unit is less than 5% (see also 
Table 7). 

Heat capacity data and their Debye-Einstein integral fit are shown in 
Fig. 8a for 12CaO⋅7Al2O3. The relative residuals are small for all data 
points and even below 0.25% for temperatures higher than 60 K 
(Fig. 8b). The adjusted characteristic temperatures θD, θE1, θE2, the pre- 
factors m, n1, n2 and their sum (m+ n1 + n2) are provided in Table 8. 

Heat capacity data and corresponding Debye-Einstein integral curves 
are depicted in Fig. 9a for 3CaO⋅Al2O3. The relative residuals in the case 
of 3CaO⋅Al2O3 are also comparatively small and not higher than 0.25% 
above 70 K (Fig. 9b). The sum of the parameters (m + n1 + n2) deviates 

Fig. 5a. Smoothed heat capacity data from Gmelin [20] and Debye-Einstein 
integral fit for CaO. 

Fig. 5b. Relative residuals of the Debye-Einstein integral fit for CaO.  

Fig. 5c. The smoothed heat capacity data from Gmelin [20] can be represented 
by a simple T3 fit. 

Fig. 6a. Measured heat capacity data from Ref. [48] and Debye-Einstein inte-
gral fit for (cristobalite) SiO2. 
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only by 4% from the sum of atoms per formula unit (see Table 9). 
Heat capacity data and Debye-Einstein integral fit for CaO⋅Al2O3 are 

presented in Fig. 10a. The relative residuals are provided in Fig. 10b. 
The adjusted characteristic temperatures θD, θE1, θE2, the pre-factors m, 
n1, n2 and their sum (m+ n1 + n2) are provided in Table 10. 

3.3. Compounds in the MgO–Al2O3 system 

The thermodynamic modelling of the MgO–Al2O3 system has been 
discussed extensively within the last thirty years, see e.g. Refs. [62–64]. 
Both, Zienert and Fabrichnaya [64] and Hallstedt [63] used the molar 
standard entropy S∘

m(298.15K) of MgO⋅Al2O3 calculated from low tem-
perature heat capacity measurements conducted by King [52] in their 
assessments. Grimes and Al-Ajaj [65] calculated the Grüneisen param-
eter for MgO–Al2O3 spinel using the heat capacity data of King [52]. The 
data [52] from 1955 seemed to be the only relevant source for low 
temperature heat capacity measurements relevant for further thermo-
dynamic calculations for MgO–Al2O3. Hence, the data from Ref. [52] for 
MgO⋅Al2O3 are also considered in this work. 

Physical properties of MgO have been studied extensively by ab- 
initio investigations as it is considered to be one of the simplest ionic 
systems, see e.g. Refs. [66–71]. Song et al. [67] used density functional 
theory combined with quasi-harmonic Debye and molecular dynamics 
to investigate bulk modulus, thermal expansivity and other 

Fig. 6b. Relative residuals of the Debye-Einstein integral fit for (cristoba-
lite) SiO2. 

Table 7 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the CaO⋅2Al2O3 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  347.3 ± 6.7 m 3.935 ± 0.157 
θE1/K  613.1 ± 25 n1 4.437 ± 0.206 
θE2/K  1243 ± 63 n2 4.189 ± 0.182 
Atoms in formula unit 12 m+n1+n2 

range of (m+n1+n2) 
12.561 
12.016–13.106   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [55] 

S∘
m(298.15K)/Jmol− 1K− 1  176.1 ± 14 – 177.8 ± 1.26 – 177.82 

H∘
m(298.15 K)/kJmol− 1  30.43 ± 2.3 – – – 30.4846  

Table 8 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the 12CaO⋅7Al2O3 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  325.0 ± 4.7 m 21.97 ± 0.642 
θE1/K  563.0 ± 13 n1 24.73 ± 0.348 
θE2/K  1270 ± 51 n2 16.07 ± 0.370 
Atoms in formula unit 59 m+n1+n2 

range of (m+n1+n2) 
62.77 
61.41–64.13   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [55] 

S∘
m(298.15K)/Jmol− 1K− 1  1038.4 ± 48 – 1044.7 ± 6.28 – 1044.745 

H∘
m(298.15 K)/kJmol− 1  175.39 ± 7.6 – – – –  

Table 9 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the 3CaO⋅Al2O3 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  305.7 ± 8.2 m 3.868 ± 0.208 
θE1/K  522.6 ± 19 n1 4.868 ± 0.095 
θE2/K  1114 ± 58 n2 2.724 ± 0.154 
Atoms in formula unit 11 m+n1+n2 

range of (m+n1+n2) 
11.46 
11.003–11.917   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [55] 

S∘
m(298.15K)/Jmol− 1K− 1  204.3 ± 16 – 205.4 ± 1.25 – 205.434 

H∘
m(298.15 K)/kJmol− 1  34.35 ± 2.4 – – – –  
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thermophysical properties of MgO. Ab initio thermodynamic properties 
of MgO in the temperature range of 0 K–3000 K and for pressures be-
tween 0 GPa and 160 GPa were calculated by Belmonte [72]; the results 
were verified by heat capacity measurements of Barron et al. [73]. Heat 
capacities in the 0 K–2000 K range and other thermodynamic properties 
under high pressures were calculated by Lu et al. [69] using ab initio 
plane-wave pseudopotential density functional theory. Mamedov et al. 

[68] discussed a method for calculating low heat capacities by repre-
senting Debye functions in terms of binomial coefficients and provided 
calculations of heat capacities of MgO in a wide temperature range. 

The Mg–O system has been recently assessed with a focus on elevated 
temperatures, see Refs. [74,75]. Jacobs and Oonk [70] described the 
heat capacity of MgO using a polynomial function between 100 K and 
3100 K. With respect to approximate low temperature heat capacity data 

Table 10 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the CaO⋅Al2O3 phase.  

Characteristic temperatures Value Pre-factors Value 

θD/K  300.1 ± 5.3 m 2.216 ± 0.075 
θE1/K  554.2 ± 18 n1 2.561 ± 0.072 
θE2/K  1162 ± 38 n2 2.463 ± 0.078 
Atoms in formula unit 7 m+n1+n2 

range of (m+n1+n2) 
7.24 
7.015–7.465   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [55] 

S∘
m(298.15K)/Jmol− 1K− 1  113.7 ± 6.8 – 114.2 ± 0.84 – 114.014 

H∘
m(298.15 K)/kJmol− 1  19.10 ± 1.1 – – – –  

Fig. 7a. Measured heat capacity data from King [52] and Debye-Einstein in-
tegral fit for CaO⋅2Al2O3. 

Fig. 7b. Relative residuals of the Debye-Einstein integral fit for CaO⋅2Al2O3.  

Fig. 8a. Measured heat capacity data from King [52] and Debye-Einstein in-
tegral fit for 12CaO⋅7Al2O3. 

Fig. 8b. Relative residuals of the Debye-Einstein integral fit for 12CaO⋅7Al2O3.  
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of MgO, they used the experimental data of Barron et al. [73]. Giauque 
and Archibald [76] measured the heat capacity of MgO from 20 K to 301 
K using isothermal shield calorimetry. As discussed in detail in Ref. [73], 
the experimental heat capacities of [76] might be affected by particle 
size and other influences leading to a deviation of their results from 
other low temperature heat capacity determinations [73,77]. Hence, 
their data are not used for the assessment in this work. It is worth noting 
that low-temperature experimental heat capacity data for MgO are rare 
and that the for a long time the pioneering work [73] had been the main 
experimental source for further calculations. However, Geiger and 
Dachs [77] provided new low temperature heat capacity measurements 
of MgO recently. 

The work of Barron et al. [73] provides measured heat capacity data 
of MgO in the range from 9.8 K to almost room temperature. Barron et al. 
[73] report the accuracies of the measurements in the temperature range 
10 < T < 20 K to be ±0.5% and ±0.2% for values higher than 20 K. The 
Debye-Einstein-Integral-fit provides a set of only 4 fit-parameters, Eq. 
(5), with relatively narrow error limits as can be seen in Table 11a. In the 
case of approximating the heat capacities of MgO a six-parameter fit, i.e. 
Eq. (4), appears to result in overfitting. This is indicated by a very high 
second Einstein temperature and a highly uncertain pre-coefficient n2. 

The calculated standard enthalpy and entropy values are compared with 
literature values in Table 11a. The Debye-Einstein integral fit of MgO 
and the relative residuals from the experimental values are depicted in 
Fig. 11a and b, respectively. The insert in Fig. 11a shows the fit in the 
temperature range between 0 K and 20 K. 

Geiger and Dachs [77] recently measured the heat capacity of syn-
thetic single-crystal MgO in the range of 5 K–302 K using relaxation 
calorimetry. They reported three independent measurements and 
calculated three separate standard entropies for MgO. In this work the 
three measurements are fitted together using the Debye-Einstein integral 
fit, Eq. (5). The results of the fit and the relative residuals are shown in 
Fig. 12a and b, respectively. The fit parameters are provided with their 
uncertainties in Table 11b. It is worth mentioning that the relative re-
siduals shown in Fig. 11b and Fig. 12b are somewhat high in the 
ultra-low temperature range. For the calculation of thermodynamic 
quantities at room temperature and above this deviation can be 
neglected. Thus, the four-parameter Debye-Einstein integral fit provides 
a suitable description of the heat capacity between 0 and 300 K, where 
overfitting is avoided. A precise fit of the heat capacity for ultra-low 
temperatures is possible for MgO with a simple T3-law, Eq. (9), as 
shown in Fig. 11c and 12c. The resulting fit parameters are provided 

Fig. 9a. Measured heat capacity data from King [52] and Debye-Einstein in-
tegral fit for 3CaO⋅Al2O3. 

Fig. 9b. Relative residuals of the Debye-Einstein integral fit for 3CaO⋅Al2O3.  

Fig. 10a. Measured heat capacity data from King [52] and Debye-Einstein 
integral fit for CaO⋅Al2O3. 

Fig. 10b. Relative residuals of the Debye-Einstein integral fit for CaO⋅Al2O3.  
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with their uncertainties in Tables 11a and 11b. 
The standard enthalpy and entropy, calculated from the low tem-

perature heat capacity fit of the data from Ref. [77], agree well with the 
results obtained using the data of Barron et al. [73], see Tables 11a and 
11b. It is worth noting that the uncertainties of the fit-parameters are 

significantly smaller in cases, where high-quality low temperature heat 
capacity data are available. The same holds for the uncertainties of the 
calculated standard enthalpies and entropies. 

The measured data for the MgO⋅Al2O3 compound in the range of 
4.33–305.2 K are taken from Klemme and Ahrens [78] and in the range 

Table 11a 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the MgO phase. Experimental data taken from Ref. [73].  

Characteristic temperatures Value Pre-factors Value 

θD/K  826.0 ± 1.9 m 1.603 ± 0.006 
θE1/K  432.3 ± 0.9 n1 0.428 ± 0.007 
Atoms in formula unit 2 m+n1 

range of (m+n1) 
2.031 
2.018–2.044 

T3-fit, Eq. (9) a = 4.719 × 10− 6 ± 1.6 × 10− 9     

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [56] 

S∘
m(298.15K)/Jmol− 1K− 1  26.9 ± 0.28 26.9 ± 0.4 – 26.924 ± 0.08 26.95 

H∘
m(298.15 K)/kJmol− 1  5.16 ± 0.05 5.17 – 5.159 5.160  

Fig. 11a. Measured heat capacity data taken from Barron et al. [73] and 
Debye-Einstein integral fit for MgO. 

Fig. 11b. Relative residuals of the Debye-Einstein integral fit for MgO. 
Measured heat capacity data taken from Barron et al. [73]. 

Fig. 11c. The heat capacity of MgO at very low temperatures follows an almost 
perfect T3-law. For this temperature range a simple T3-fit is suitable. Measured 
heat capacity data taken from Barron et al. [73]. 

Fig. 12a. Measured heat capacity data taken from Geiger and Dachs [77] and 
Debye-Einstein integral fit for MgO. 
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from 53.55 to 296.31 K from King [52]. To the best of the authors’ 
knowledge, no other measurements of heat capacities are available at 
low temperatures. A comparison of the two measurements from Klemme 
and Ahrens [78] and King [52] is shown in Fig. 13. It can be clearly seen 
that the measured heat capacities deviate significantly above 200 K; this 

may be due to different cation disordered states of the samples used in 
Refs. [52,78]. The influence of the sample preparation on the measured 
heat capacity of MgO⋅Al2O3 is further discussed in Ref. [78]. The 
experimental heat capacity data are approximated by means of Eq. (5) in 
both cases. The values of the fit parameters θD, θE1, m and n1 together 
with their uncertainties obtained by using the data from King [52] are 
provided in Table 12a. The sum of the pre-factors m+n1 corresponds 
very well to the atoms per formula unit in MgO⋅Al2O3. Klemme and 
Ahrens [78] estimated the error of their measured heat capacity values 
to be ±0.5% (1). However, when looking at the measured data (see 
Fig. 14a) considerable fluctuations occur in the range from 235 to 300 K. 
The origin of these fluctuations is not reported but might originate from 
an unstable cation disordered state. When investigating the low tem-
perature data in detail shown in the insert in Fig. 14a, a clear discrep-
ancy between the model and measured data is observed. Noticeably, 
extrapolation of the measured data does not lead to the absolute zero. 
Furthermore, the low temperature data seem not to follow the “T3-law” 
and consequently, the calculated values and the experimental heat ca-
pacity values deviate strongly below 7 K, see Fig. 14b. However, the 
standard entropy S∘

m(298.15K) appears not to be too far off, since the 
contribution of low temperature data to the calculation of standard 
entropies is comparatively small. Klemme and Ahrens [78] provide a 
value for the standard entropy S∘

m(298.15K) = (80.9 ± 0.6) J mol− 1∙K− 1. 
This value agrees well with the standard entropy S∘

m(298.15K) calcu-
lated from the experimental data of [52], see Tables 12a and 12b. The 
experimentally obtained heat capacities of MgO⋅Al2O3 are fitted using 
the four-parameter-fit as given in Eq. (5). It should be noted that no 
physically meaningful fit could be achieved using Eq. (4) for this com-
pound. The calculated value for S∘

m(298.15K) obtained from the 

Table 11b 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the MgO phase. Experimental data taken from Ref. [77].  

Characteristic temperatures Value Pre-factors Value 

θD/K  824.3 ± 0.7 m 1.59 ± 0.002 
θE1/K  431.3 ± 0.3 n1 0.432 ± 0.003 
Atoms in formula unit 2 m+n1 

range of (m+n1) 
2.022 
2.017–2.027 

T3 fit, Eq. (9) a = 4.787 × 10− 6 ± 4.7 × 10− 9     

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [56] 

S∘
m(298.15K)/Jmol− 1K− 1  26.9 ± 0.1 26.9 ± 0.4 – 26.924 ± 0.08 26.95 

H∘
m(298.15 K)/kJmol− 1  5.150 ± 0.02 5.17 – 5.159 5.160  

Fig. 12b. Relative residuals of the Debye-Einstein integral fit for MgO. 
Measured heat capacity data taken from Geiger and Dachs [77]. 

Fig. 12c. The heat capacity of MgO at very low temperatures follows an almost 
perfect T3-law. For this temperature range a simple T3-fit is suitable. Measured 
heat capacity data taken from Ref. [77]. 

Fig. 13. Measured heat capacity data from Refs. [52,78] and the 
four-parameter Debye-Einstein integral fit for MgO⋅Al2O3. 
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Debye-Einstein integral fit lays within the error bound of the literature 
value. The number of atoms per formula unit deviates by 10% from the 
sum of the pre-factors, which accounts for the highest deviation of all the 
assessed compounds in this work, see Table 12b. The standard entropy 
values of MgO⋅Al2O3 vary strongly depending on the reference (see 
Tables 12a and 12b and further discussion in Ref. [78]). 

4. Discussion 

Heat capacity data - here in particular for various substances con-
nected with steelmaking processes and refractory design - are described 
by means of Debye-Einstein integrals. In some cases, experimental data 
are only available above 50 K. Especially in these cases a physically 
meaningful extension to lower temperatures can be achieved by the 
Debye-Einstein integral approach resulting in reasonable estimates of 

the standard entropies and enthalpies of these substances. The Debye- 
Einstein integral approximation valid for heat capacities between 0 K 
and 300 K, consists at most of six fit parameters, Eq. (4), with one Debye 
temperature θD, 2 Einstein temperatures θE1, θE2 and three pre-factors 
m, n1 and n2. Although there is no constraint implemented in the 
Levenberg-Marquardt algorithm used to find the three pre-factors their 
sum automatically turns out to approximate the sum of atoms per for-
mula unit, see also [25]. The same applies to the Debye-Einstein fit, Eq. 
(5), where the sum of the required two pre-factors also comes close to 
the sum of atoms per formula unit. 

5. Conclusions 

Heat capacity data of solid compounds for the binary systems 
CaO–SiO2, CaO–Al2O3 and MgO–Al2O3 are approximated by the Debye- 
Einstein integral approach. The following conclusions are drawn: 

Table 12a 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the MgO⋅Al2O3 phase. Experimental data taken 
from [52].  

Characteristic temperatures Value Pre-factors Value 

θD/K  649.5 ± 8 m 3.900 ± 0.119 
θE1/K  919 ± 15 n1 3.114 ± 0.097 
Atoms in formula unit 7 m+n1 

range of (m+n1) 
7.014 
6.798–7.23   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [55] 

S∘
m(298.15K)/Jmol− 1K− 1  79.8 ± 4 88.7 ± 0.4 80.58 ± 0.42 88.7 ± 4.2 88.692 

H∘
m(298.15 K)/kJmol− 1  15.26 ± 0.73 15.41 – 15.411 15.4097  

Table 12b 
Adjusted characteristic temperatures, pre-factors, calculated standard enthalpies and entropies of the MgO⋅Al2O3 phase. Experimental data taken from 
[78].  

Characteristic temperatures Value Pre-factors Value 

θD/K  673 ± 5.9 m 4.281 ± 0.088 
θE1/K  1008 ± 13.5 n1 3.432 ± 0.062 
Atoms in formula unit 7 m+n1 

range of (m+n1) 
7.713 
7.563–7.863   

This Work Hemingway [51] King [52] NIST - JANAF [53] Landolt-Börnstein [55] 

S∘
m(298.15K)/Jmol− 1K− 1  81.1 ± 2.8 88.7 ± 0.4 80.58 ± 0.42 88.7 ± 4.2 88.692 

H∘
m(298.15 K)/kJmol− 1  15.569 ± 0.5 15.41 – 15.411 15.4097  

Fig. 14a. Measured heat capacity data from Klemme and Ahrens [78] and 
Debye-Einstein integral fit for MgO⋅Al2O3. 

Fig. 14b. Relative residuals of the Debye-Einstein integral fit for MgO⋅Al2O3.  
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• This work further confirms its potential to describe temperature 
dependent heat capacities and thereby thermodynamic functions in a 
concise way from 0 K to 300 K in case that no phase transformations 
occur in this temperature region.  

• The method is especially useful for extrapolating heat capacity data 
to 0 K, when appropriate data for ultra-low temperatures are missing.  

• The obtained parameters can be easily stored in a thermodynamic 
database. The temperature dependence of all thermodynamic func-
tions become thereby accessible for a Gibbs energy minimization 
software by using Eqs. (6) and (7).  

• This approach is also considered to contribute to on-going efforts in 
providing relevant coefficients for a standardized description of 
thermodynamic systems. 
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D.M. Ogris and E. Gamsjäger                                                                                                                                                                                                                

http://refhub.elsevier.com/S0364-5916(21)00093-6/sref42
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref42
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref42
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref43
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref43
https://www.originlab.com/doc/Tutorials/Fitting-Integral-LabTalk
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref45
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref45
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref46
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref46
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref47
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref47
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref47
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref47
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref48
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref48
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref48
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref49
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref49
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref50
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref50
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref50
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref51
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref51
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref51
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref52
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref52
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref53
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref53
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref53
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref54
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref54
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref54
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref55
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref55
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref55
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref56
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref56
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref56
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref57
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref57
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref57
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref58
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref58
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref58
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref59
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref59
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref60
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref60
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref61
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref61
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref61
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref62
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref62
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref62
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref63
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref63
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref64
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref64
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref65
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref65
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref66
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref66
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref66
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref67
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref67
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref67
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref68
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref68
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref68
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref69
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref69
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref69
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref70
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref70
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref70
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref71
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref71
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref72
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref72
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref73
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref73
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref74
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref74
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref74
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref75
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref75
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref75
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref76
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref76
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref76
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref76
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref77
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref77
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref77
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref78
http://refhub.elsevier.com/S0364-5916(21)00093-6/sref78

	Heat capacities and standard entropies and enthalpies of some compounds essential for steelmaking and refractory design app ...
	1 Introduction
	2 Theory
	3 Results and discussion
	3.1 Compounds in the CaO–SiO2 system
	3.2 Compounds in the CaO–Al2O3 system
	3.3 Compounds in the MgO–Al2O3 system

	4 Discussion
	5 Conclusions
	Data availability
	Declaration of competing interest
	Acknowledgements
	References


