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a b s t r a c t

We investigate bubble dynamics in a submerged double-jet as an example of weakly coupled, Lagrangian
transport. The setup resembles continuous casting of steel at Reynolds numbers Re ¼ 136000 to
Re ¼ 272000. Using short time series of flow fields obtained from large-eddy simulations (LES) with a
discrete bubble model, we calculate a database of transport patterns and time-extrapolate them to long
durations in the framework of recurrence CFD (rCFD). A dedicated averaging procedure along bubble tra-
jectories allows us to study their transport with large steps at little numerical costs and monitor their
spatial distribution. Besides time-extrapolation for fixed Re with a single database, we demonstrate
how several time series can be combined to (i) enforce symmetries and (ii) approximately model condi-
tions in between. We compare bubble volume fraction fields and total hold-up obtained from LES and
from rCFD and find very good to satisfying agreement with speed up factors of more than 500.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Turbulent flows constitute a prime example for complex,
spatio-temporal multi-scale dynamics. Comparatively stable
large-scale vortices decay into mid- and finally small-sized eddies
with decreasing life times such that short-lived, small-scale fluctu-
ations characterize the local behavior of such flows. The non-trivial
interplay between structures of different scales gives rise to an
overall highly complex evolution, which still poses serious model-
ing and simulation challenges. While the governing equations of
motion (EOMs), the Navier–Stokes equations, are well-known,
their solution requires extremely fine meshes and small time steps,
which limits direct numerical simulations (DNS) to small-scale,
short-term studies. The extreme multi-scale nature of high-Re
flows can be mitigated by spatial filtering, which amounts in LES
(Pope, 2000) that account for the influence of sub-grid scales with
empirical correction terms and can be solved with coarser resolu-
tion and larger time steps. Nevertheless, large-scale investigations
or long-term observations are hardly possible. The increase of com-
puter power, especially the availability of a huge number of pro-
cessors to carry out massively parallel simulations, has been
pushing the limits of LES to systems of appreciable size. However,
long-term studies have remained elusive, which is particularly
regrettable if one is interested in slow processes like species or
heat transport or certain types of chemical conversion on top of a
highly dynamic background. For such applications, approximations
to speed up calculations need to be imposed so that long durations
can be covered. Such methods include reduced-order models based
on proper orthogonal decomposition (POD) (e.g. Georgaka et al.,
2020; Hijazi et al., 2020; Stabile et al., 2019; Star et al., 2021;
Zimmermann and Görtz, 2012) and/or machine-learning tech-
niques like Gaussian processes regression (Xiao et al., 2019; Yang
and Xiao, 2020) or various types of neural networks (e.g. Lui and
Wolf, 2019; Murata et al., 2020; Pawar et al., 2019; Rahman
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Nomenclature

Greek letters
a ½ � volume fraction
b kg=s½ � drag correlation
d ½ � Kronecker delta
D m½ � filter width
� ½ � recurrence threshold
m m2=s

� �
viscosity

q kg=m3
� �

density
r kg= ms2

� �� �
stress tensor

s s½ � duration, time range
s kg= ms2

� �� �
deviatoric stress tensor

X 1=s½ � rate-of-rotation tensor

Latin symbols
C ½ � model constant
_d m=s½ � displacement field
d m½ � diameter
D m2=s

� �
diffusivity

D ½ � distance norm/matrix
Dt s½ � time step
f kg= m2s2

� �� �
force density

F kgm=s2
� �

force
g m=s2

� �
gravity

I ½ � identity matrix
J ½ � jump matrix
k m2=s2

� �
kinetic energy

m kg½ � bubble mass
N ½ � integer number
N ½ � distance norm’s normalization constant
P ½ � probability
p kg= ms2

� �� �
pressure

R ½ � recurrence norm/matrix

r m½ � position
S 1=s½ � rate-of-strain tensor
S ½ � shift matrix
t ½ � system state vector
T ½ � transfer matrix
u m=s½ � filtered velocity field
U m=s½ � unfiltered velocity field
v m=s½ � bubble velocity

Subscripts/Superscripts
b bubble
C coarse mesh
ext external
f fluid
fluc fluctuation
nn nearest neighbor
res residual
rec recurrence
rnd random
sgs sub-grid scale
t terminal

List of abbreviations
CFD computational fluid dynamics
DNS direct numerical simulation
LES large eddy simulation
DNS direct numerical simulation
POD proper orthogonal decomposition
Re Reynolds number
rCFD recurrence CFD
Sc Schmidt number
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et al., 2019; San and Maulik, 2018). A general overview of turbu-
lence modeling with data-assisted techniques has been provided
by Duraisamy et al., 2019.

In contrast to these highly sophisticated and elaborate
approaches, we have developed the conceptually very simple
method rCFD specifically targeted at recurrent systems, where
characteristic patterns keep reappearing albeit in a completely
irregular fashion. Based on a short time series of flow fields
obtained with any detailed simulation technique, rCFD extrapo-
lates this series with an iterated method of analogues (Cecconi
et al., 2012). Instead of solving the EOMs to obtain the future evo-
lution of the latest flow state, one determines the most similar pre-
vious configuration within the series and uses the corresponding
evolution. If this procedure is applied to e.g. the velocity of a turbu-
lent flow, one can easily calculate long-term transport processes on
top of the field series by solving only the passive transport equa-
tion without the need to deal with momentum and pressure.
Besides its simplicity, rCFD has two major advantages: It is long-
term stable per construction (the extrapolated sequence contains
only physically valid flow fields), and it involves no black-box cal-
culations which might be hard to interpret and make it difficult to
trace errors.

In previous work on turbulent flows, rCFD was employed to
investigated passive species transport in vortex shedding behind
obstacles (Abbasi et al., 2020; Du et al., 2020) and in submerged
jets (Abbasi et al., 2020; Pirker et al., 2020) at high Re. Especially
the latter type of system provides a very interesting playground
2

for rCFD. Under confinement, submerged jets can exhibit low-
frequency oscillations (Mosavati et al., 2020; Lawson and
Davidson, 2001; Wen et al., 2014; Righolt et al., 2015), which poses
a serious challenge for a description only based on short time ser-
ies. With this work, we significantly deepen our understanding and
improve the foundations of rCFD by applying it to the example of
coupled bubble transport by a turbulent double-jet at
Re ¼ 136000 to Re ¼ 272000. More specifically, we address and
present solutions to the following issues: (i) Even though rCFD
does not require to solve the momentum and pressure equations,
transport of a passive or weakly coupled species is subject to rapid
velocity fluctuations and therefore limited by very small time
steps. (ii) Slow modes, e.g. low-frequency jet oscillations, can
easily exceed to scope of a database consisting of a short time
series. (iii) Turbulent flows often lead to extremely noisy and
hence almost structureless distance matrices, which seems to
contradict the basic idea of rCFD to identify similar flow states
and employ knowledge about their past behavior. (iv) It would
be highly desirable to simulate conditions not directly covered
by a previously recorded database, e.g. for time-varying boundary
conditions.

We stress that even though the configuration of our test case is
reminiscent of continuous casting of steel (cf. Section 3), the above
findings apply to any type of turbulent flow, where the long-term
behavior is of interest. Equipped with these insights, it is possible
to carry out very fast simulations of transport processes under tur-
bulent conditions.
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Our work is organized as follows. In Section 2, we review the
fluid-mechanical EOMs in the presence of discrete bubbles and
summarize the theoretical background of rCFD. The case setup
for our simulations is described in Section 3 with the obtained
results provided and discussed in Section 4. Finally, we draw con-
clusions and point out current limitations of the methodology in
Section 5.

2. Theoretical background

We briefly review the EOMs of a fluid with a dispersed, sec-
ondary phase like bubbles or solid particles. Simulations that fully
resolve the flow fields around (and some of them also within, for
the case of bubbles) each discrete element (Blais et al., 2016;
Baltussen et al., 2017) are very costly and limited to small system
sizes. Therefore, we take the unresolved point of view that
permits the description of larger-scale problems. For the sake of
simplicity, we restrict ourselves to the incompressible case with
constant density qf , but note that this does not impact any of
our subsequent findings. In the second subsection, we provide
the reader with an overview of the rCFD methodology consisting
of distance matrix, recurrence path and time-extrapolated long-
term simulation. We put a special focus on new developments
relevant to the problem of bubble transport in a turbulent jet,
in particular on large-step transport on rapidly varying fields
and on the issue of utterly noisy distance plots without clear
recurrences.

2.1. EOMs of a turbulent fluid with a dispersed bubble phase

2.1.1. Fluid EOMs
In the presence of a dispersed, secondary phase, the unresolved

flow model is obtained by locally filtering the Navier–Stokes equa-
tions for a fluid with velocity Uf with a normalized filter function
g rð Þ that falls off after a few bubble or particle diameters. This leads
to the structurally similar set of equations (Anderson and Jackson,
1967)

@

@t
af þr � afuf ¼ 0 ð1Þ

@

@t
afuf þr � afufuf ¼ 1

qf
r � r 0ð Þ

f �r � sres þ f b�f þ f ext
� �

ð2Þ

for the filtered velocity uf � g � Uf . Compared to the incompress-
ible, single-phase Navier–Stokes equations, Eqs. (1) and (2) differ
in several regards. The volume fraction field af accounts for the
locally available volume not occupied by the secondary phase,
and f b�f describes the momentum exchange between the phases.
f ext contains all forces of external origin such as gravity
f grav ¼ qfafg. For the sake of simplicity, we consider a Newtonian
fluid with

r 0ð Þ
f � �pf I þ qfmf ruf þ rufð Þy

� �
� 2
3
qfmf Ir � uf ð3Þ

� �pf I þ qfs; ð4Þ
where pf is the fluid pressure, I the unit matrix, mf the kinematic vis-
cosity and s the deviatoric stress.

In the filtering procedure, the nonlinear convective term gives
rise to the residual stress tensor

sres ¼ g � UfUfð Þ � g � Ufð Þ g � Ufð Þ ¼ g � UfUfð Þ � ufuf ; ð5Þ
which needs to be closed in analogy to single-phase turbulence
(Pope, 2000). The Boussinesq approach connects the residual stres-
ses to the rate-of-strain tensor

S � 1
2

ruf þ rufð Þy
� �

ð6Þ
3

with a sub-grid scale viscosity msgs, which leads to

rf � r 0ð Þ
f � sres ¼ �pf I þ 2qf mf þ msgs

� �
S � 2

3
qf mf þ msgs
� �

Itr Sð Þ:
ð7Þ

A multitude of closure models for msgs can be found in literature.
Some of them were tailored to specific applications, while others
may be regarded as more general. In this work, we employ the
wall-adapting local eddy viscosity (WALE) (Nicoud and Ducros,
1999) which exhibits the correct y3 near-wall scaling per construc-
tion. In addition to the rate-of-strain tensor S, it takes the rate-of-
rotation tensor

X � 1
2

ruf � rufð Þy
� �

ð8Þ

to determine the sub-grid-scale viscosity in terms of

n dð Þ � S � S þX �X� 1
3
I S : S �X : Xð Þ ð9Þ

msgs ¼ CwDð Þ2
n dð Þ : n dð Þ

� �3=2

S : Sð Þ5=2 þ n dð Þ : n dð Þ
� �5=4 ð10Þ

Cw ¼ 0:325: ð11Þ
D, a characteristic length scale of the flow, is obtained from the local

cell volume via D ¼ Vcð Þ1=3. The unresolved kinetic energy may be
estimated with (Shukla and Dewan, 2019)

ksgs ¼ msgs
CkD

� 	2

ð12Þ

Ck ¼ 0:094: ð13Þ
2.1.2. Bubble EOMs
Bubbles are deformable and therefore more complicated than

rigid particles (Ford and Loth, 1998). However, if they are not too
large, they can legitimately be modeled as spherical, discrete ele-
ments with constant density qb (Sujatha et al., 2017). A bubble
with mass mi and velocity v i obeys

d
dt

ri ¼ v i ð14Þ
d
dt

miv i ¼
X
j

F b�bð Þ
i;j þ F b�fð Þ

i þ F extð Þ
i ; ð15Þ

where F b�bð Þ
i;j is the interaction between two bubbles i and j in con-

tact, F b�fð Þ
i models the forcing of the surrounding fluid and F extð Þ

i con-

tains external contributions such as gravity F gravð Þ
i ¼ Viqbg or wall

forces F wallð Þ
i . A detailed analysis of the various contributions to

the bubble-fluid interaction such as pressure gradient, drag, lift
and virtual mass forces can be found in the work of Jain et al., 2013.

A high-fidelity description requires all these force contributions,
and any adaptions need to be considered carefully. In the present
investigation, we chose to impose significant simplifications
because the main focus of our work concerned the time-
extrapolation of previously calculated time series independent from
the model with which these data had been obtained. Hence, we
retained only pressure gradient and drag,

F b�fð Þ
i � �Virpf þ uf � v ið Þb uf � v ið Þ ð16Þ

� �Viqfg þ uf � v ið Þb uf � v ið Þ ð17Þ
in our derivation, where we further assumed that the hydrostatic
outweighs the dynamic pressure. If bubbles are much lighter than
the surrounding fluid, they can follow the acting forces so fast that

they quickly reach their local equilibrium velocity v 0ð Þ
i , and d

dt miv i
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vanishes. Hence, the right-hand side of Eq. (15) needs to vanish, too.
Neglecting bubble-wall and bubble–bubble interaction (which is
permissible for low concentrations), the interphase force needs to
balance the bubble’s weight,

F b�fð Þ
i þ F gravð Þ

i ¼ 0; ð18Þ
so that

Vi qb � qfð Þg � � uf � v 0ð Þ
i

� �
b uf � v 0ð Þ

i

� �
: ð19Þ

This equation is satisfied if the local bubble and fluid velocities dif-
fer by the so-called terminal rising velocity v t which is oriented in
opposite direction of gravity and constant for a given bubble size. v t

can either be determined from the solution of Eq. (19) for a choice of
drag correlation b, or it can be measured experimentally.

Once the terminal rising velocity is known, it is not necessary
anymore to deal with an ODE of the type Eq. (15). Instead, we
may directly solve

d
dt

ri ¼ uf rið Þ þ v t þ v fluc; ð20Þ

which is numerically much simpler, especially for the very stiff
problem of low bubble and high fluid density. The last term in Eq.
(20) accounts for turbulent dispersion due to sub-grid fluctuations,
which is determined by the Schmidt number Scsgs. The discrete
counterpart of a passive species diffusing with Dsgs ¼ msgs=Scsgs is
given by a random walk with

v fluc ¼ nrnd

ffiffiffiffiffiffiffiffiffiffiffi
6Dsgs

Dt

r
; ð21Þ

where Dt is the step size in the solution procedure of Eq. (20) and
nrnd a randomly oriented unit vector. Due to the random nature of
nrnd, bubbles in high-concentration regions are automatically dis-
persed, which prevents overpacking and allows to neglect any

repulsive bubble–bubble interaction F b�bð Þ
i;j for not too high volume

fractions. However, bubbles (almost) in contact with a wall require
special treatment. Any component of v t þ v fluc in normal direction
towards the wall needs to be discarded.

Finally, the bubble-fluid interaction F b�fð Þ
i lets us evaluate the

interphase force density f b�f in Eq. (2), which has not been deter-
mined yet. Momentum conservation requires

f b�f rð Þ ¼ �
X
i

g jr � rijð ÞF b�fð Þ
i : ð22Þ

In the present case, we use Eq. (19) to get

f b�f rð Þ ¼
X
i

g jr � rijð ÞViqbg ¼ 1� afð Þqbg: ð23Þ

Then, the fluid momentum equation takes the simplified form

@

@t
afuf þr � afufuf ¼ 1

qf
r � rf þ 1� afð Þ qb � qfð Þgð Þ; ð24Þ

where a constant term qfg has been moved into the definition of
pressure. For very low ratios of qb=qf , the interphase interaction
Eq. (23) is small and the main influence of the bubble on the fluid
phase stems from volume displacement and a correspondingly
decreased mixture density.

In our simplified modeling strategy, Eq. (24) needs to be solved
together with Eq. (1) and Eq. (20).

2.2. Recurrence CFD

2.2.1. Distance norm
A flow’s similarity at two times ti; tj can be assessed by defining

a distance function D ti; tj
� �

. There is no unique, best choice for
4

D ti; tj
� �

, but a previous investigation demonstrated the importance
of field data instead of single probing points (Lichtenegger, 2018).
Hence, reasonable choices for a turbulent flow compare the veloc-
ity or the sub-grid-scale kinetic energy,

Du ti; tj
� � ¼ 1

N

Z
d3r u r; tið Þ � u r; tj

� �� �2 ð25Þ

Dk ti; tj
� � ¼ 1

N

Z
d3r ksgs r; tið Þ � ksgs r; tj

� �� �2
; ð26Þ

where N is a normalization constant so that D 2 0;1½ �. The expo-
nent in Eqs. (25) and (26) is rather arbitrary and hardly influences
the final results (Lichtenegger and Miethlinger, 2020).

2.2.2. Recurrence matrix and path
Given a time series of flow fields, D ti; tj

� �
can be computed for

each pair of states to obtain the system’s distance matrix. Besides
this continuous description of similarity, the binary recurrence
matrix (Eckmann et al., 1987)

R ti; tj; �
� � � H �� D ti; tj

� �� � ð27Þ
is a popular way to discriminate between similar and dissimilar
configurations with regard to a reference distance �.

If a time series sampled with steps Dtrec (the ”database”) leads
to a recurrence matrix where most states have at least recurred
once, it is possible to extend it in a meaningful way to much longer
durations using a Markov process. We begin at some time step tl of
the database with corresponding fields. For the following step, we
take fields from time

tl !
tl þ Dtrec with prob:1� Pjump

tnn lð Þ þ Dtrec with prob:Pjump;

(
ð28Þ

i.e. either those from the time directly after tl or from the time after
that past state tnn lð Þ which was most similar to tl according to D. We
call this latter state at time tnn lð Þ the nearest neighbor to tl. The prob-
ability Pjump to restart from a previous time needs to be chosen with
the database size in mind. It is connected to the average length of
subsequent steps Nnojump before a jump by

Pjump ¼ 1
1þ Nnojump

: ð29Þ

We often use a value of Nnojump in the range of half the database size.
For more details on the construction of such a recurrence path, we
refer the interested reader to our previous publications (e.g.
Lichtenegger et al., 2019).

Eq. (28) may be regarded as an iterated method of analogues
(Cecconi et al., 2012) and allows to create series of arbitrary length
at very little numerical costs. Despite the simplicity of this approx-
imation to the long-term evolution of the system, the resulting
sequence has very attractive properties: (i) It consists of a rela-
tively smooth succession of physically valid flow fields (they are
taken from the database created with a high-fidelity simulation
technique). (ii) It has (approximately) the same spatially resolved
mean, variance and higher-order moments as the underlying data-
base (cf. App. A). This can serve as a condition for sufficient data-
base size. Once the leading statistical moments do not change
anymore upon increasing database length, recording can be
stopped. (iii) Even under circumstances where no clear recurrences
might be found (e.g. because of noise), the time-extrapolated series
reproduces the correct mean and variance, which explains why it
has already proven to work for such scenarios (Abbasi et al.,
2020). (iv) If the system under consideration displays any symme-
tries, they can be enforced in the long-term extrapolation by aug-
menting the database with a correspondingly transformed series.
Then, the recurrence process takes the form
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tl !
tl þ Dtrec with prob:1� Pjump

tnni lð Þ þ Dtrec
�

with prob:wiPjump
�
i¼1...Ndb

;

(
ð30Þ

where jumps can lead to any of the Ndb databases with weights wi.
For the example of a system with reflection symmetry in one direc-
tion, we would have the initial and the mirrored database with
equal weights w1 ¼ w2 ¼ 0:5.

Eq. (30) can also be used to account for gradual changes in the
dynamics. In this work, we consider flows at different inlet veloc-
ities ulow 6 u 6 uhigh. Having available databases corresponding to
ulow and uhigh, we can attempt to form a superposition by adjusting
the weights wi such that the desired inlet velocity is obtained.
These weights may vary with time such that a time-dependent
inlet condition can be realized.

2.2.3. Long-term simulations with rCFD
If the velocity field of a turbulent flow is time-extrapolated as

explained above, it is straight-forward to investigate bubble
motion according to Eq. (20). The velocity field is available without
further computations, and the velocity fluctuations v fluc can be cal-
culated e.g. via the sub-grid-scale kinetic energy. Indicating quan-
tities obtained from the recurrence process with a superscript
(rec), Eq. (20) turns into

d
dt

ri ¼ u recð Þ
f rið Þ þ v t þ v fluc k recð Þ

sgs

� �
: ð31Þ

In order to solve Eq. (31) numerically, a time step Dtbubble needs to
be chosen that is sufficiently small to resolve both temporal and
spatial variations of the velocity and kinetic energy fields, which
limits its size to the same value as for Eq. (20). If one wants to
use a larger step size, one needs to tame the rapid fluctuations of
a turbulent flow. To this end, we introduce the displacement field

_d r; tð Þ � 1
Dtbubble

X
i

g jr � ri tð Þjð Þ ri t þ Dtbubbleð Þ � ri tð Þð Þ; ð32Þ

which corresponds to the bubble velocity averaged along the trajec-
tories. We interpret the displacement field as a combination of
velocity-based motion and discrete cell-to-cell shifts (Pirker and
Lichtenegger, 2018) uniting the benefits of each approach: It con-
tains finite-time displacements eliminating the need to resolve
the strong curvature of the turbulent velocity field, but it still has
the geometric interpretation of a vector field, which is useful to
interpolate it in empty cells.

Eq. (32) can be evaluated easily if bubble positions are recorded
with a sampling step Dtbubble, and can be time-extrapolated in the
same way as other flow fields. Since it already contains the effect
of the terminal rising velocity, the bubble EOM (31) turns into

d
dt

ri ¼ _d recð Þ rið Þ þ v fluc k recð Þ
sgs

� �
; ð33Þ

which can be solved safely with a larger time step. If the fluctua-
tions v fluc are merely a small correction over convective transport,
no specific treatment for using a larger value of Dtbubble is necessary.
Otherwise, one could compute the variance of displacement analo-
gously to Eq. (32) to approximate v fluc.

As already pointed out in previous investigations (Abbasi et al.,
2020), passive transport may be calculated on a significantly coar-
ser mesh than that employed for the solution of the momentum
and pressure equation. It is not very farfetched to assume the same
for weakly coupled transport as in the present study. Hence, we
either map the velocity field from the LES mesh to a coarser one
C for the rCFD simulations, or we evaluate Eq. (32) with lower res-
olution. In either case, the loss of fine-scale information needs to be
accounted for in terms of an effective diffusivity. We employ Ger-
mano’s et al. (Germano et al., 1991; Germano, 1992) identity for
5

the consecutive application of two filters for the residual stress,
and find

keff ¼ hksgsiC þ
1
2
huf � uf iC �

1
2

uf iC � uf iC;
 ð34Þ

where :iC


indicates filtering with respect to the coarser mesh. The
full velocity fluctuations keff on C consist of the LES sub-grid-scale
kinetic energy ksgs and the fluctuations of the LES velocity evaluated

on C. Therefore, we use v fluc k recð Þ
eff

� �
to picture bubble dynamics at a

lower resolution.

3. Case and simulation setup

During continuous casting of steel, a double-jet of liquid steel
laden with argon bubbles enters a container (the mold) with an
open top where slag separates steel from air (Thomas, 2018). Var-
ious publications have addressed this type of problem (e.g. Chen
et al., 2019; Chen et al., 2019; Li et al., 2021; Liu et al., 2019; Jin
et al., 2018; Puttinger and Saeedipour, 2022; Trang et al., 2019;
Wu et al., 2019). However, all of them are plagued by the jets’
inherent multi-scale nature, which prevents the efficient simula-
tion of long-term transport.

3.1. LES

Our case setup of liquid steel carrying argon bubbles through a
submerged entry nozzle (SEN) into the mold was inspired by the
works of Cho et al. (2014) and Javurek and Wincor (2020). The
domain displayed in Fig. 1 was discretized into

N LESð Þ
cell ¼ 3:075 � 106 cells with side lengths Dxcell � 3� 5mm in the

SEN and the jet regions. The dimensions of the nozzle port and
the mold are provided in Table 1.

We assumed a liquid density of qf ¼ 7000kg=m3 and viscosity

of mf ¼ 1 � 10�6m2=s, which were in the range of values typically
found in publications on continuous casting of steel (e.g. Chen
et al., 2019; Huang and Thomas, 1998). Notably, our choice of mf
corresponded to conditions far from solidification, where a massive
increase of viscosity takes place. Depending on the composition of
the liquid steel under consideration, this would imply tempera-
tures above 1520 	C (Miettinen and Howe, 2000; Sołek et al.,
2012). Besides any temperature dependence, we also neglected
the variation of viscosity with the local shear rate even though
shear thinning in liquid steel has been clearly documented (Sołek
et al., 2012). The density of argon bubbles was qb ¼ 0:5kg=m3. To
keep their number in a reasonable range, we chose a diameter of
db ¼ 5. Based on these values and the findings of Javurek and
Wincor, 2020; Szekely, 2012, we estimated a terminal rising veloc-
ity of v t ¼ 0:22 m/s. Furthermore, we carried out a case variation
with smaller bubbles of db ¼ 1:5mm, for which we set
v t ¼ 0:18m=s (cf. Section 4.5).

We stress that a notable amount of uncertainty is connected to
the determination of v t. Force correlations from rigid particles may
be used only for relatively small bubbles, because larger ones
deform and exhibit more complicated trajectories (Ford and Loth,
1998). This is a consequence of surface tension and can be approx-
imately accounted for with Weber number dependent drag coeffi-
cients (Chen et al., 2019; Kuo and Wallis, 1988). Alternatively, the
terminal rising velocity may be measured. Due to their similar
kinematic viscosities, results from experiments with water carry
over to liquid steel for not-too-large bubbles to some extent.
Indeed, our choice of v t extracted from such measurements agreed
with the range of values reported by Zhang et al., 2006 where
several force correlations were compared for the case of liquid
steel.



Fig. 1. Simulation geometry. (a) A sketch of the domain illustrates how bubbles
(red) and fluid (blue) followed a few selected streamlines. Bubbles left the box
through the top surface, while liquid flowed through the bottom plane. (b) A cross
section at z ¼ 0 provides more details about the geometry. The darker region
indicates the submerged entry nozzle (SEN) through which material entered the
mold shown in lighter gray. Values for the various parameters can be found in
Table 1. The extent in z direction and the cross section of the SEN port are not
indicated. The red dots represent the probing points (cf. Figs. 3 and 4), and the line
plots of Fig. 15 are marked in d.ash-dotted blue.

Table 1
Dimensions of the computational domain.
The parameters are illustrated in Fig. 1.

Domain parameters

LX 1300mm
LY 2500mm
LZ 125mm
Dinner 85mm
Douter 150mm
Aport 80
 85mm2

aport �30	

Lsubm 400mm
probe points �200;�420;0ð Þmm

�600;�1800;0ð Þmm
probe lines x;�410;0ð Þmm

�150; y;0ð Þmm
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Altogether, three LES cases were carried out: one at low inlet
velocity ulow ¼ 1:6m=s, one at high inlet velocity uhigh ¼ 3:2m=s,
and one with a linear increase from ulow to uhigh. The two velocities
corresponded to Re ¼ 136000 and Re ¼ 272000 with the SEN
diameter taken as characteristic length scale. In all simulations,
we set a bubble concentration of ab � 0:075 in the SEN.

For the sake of simplicity, we adapted the treatment of the top
boundary. There is a slag layer with a free surface of air above it in
an actual continuous casting plant, which would necessitate a
multi-fluid-phase description along with the dispersed bubble
phase. Hence, we put a fixed wall on top of the liquid steel in
our simulations. We stress that this does not affect the conclusions
of our investigation but would only have made the case setup more
cumbersome.

We solved Eqs. (1), (20) and (24) using the PISO algorithm
implemented in CFDEMcoupling (Goniva et al., 2012) together
with the DEM code LIGGGHTS (Kloss et al., 2012). Time steps were
small enough to keep the Courant number below 0:6 and can be
found in Table 2. The second-order central difference scheme
was applied to gradient, convection and diffusion terms, and for
transient parameters, Euler first-order discretization was used.

After equilibration, validation data were recorded over dura-
tions of sval ¼ 20s for the low-velocity case and sval ¼ 30s for the
high and the time-varying velocity.

3.2. rCFD

We employed rCFD’s resilience against grid coarsening (Abbasi
et al., 2020) and carried out all time-extrapolated simulations on a

mesh with only N rCFDð Þ
cell ¼ 350000, which corresponded to about

11% of the LES value and amounted in roughly twice as large cell
side lengths. Despite the bigger volumes, instances occurred during
the rCFD runs, where bubbles arrived at a cell c at time ti that had

not been occupied during LES so that _d rc; tið Þ was not defined. We

circumvented this problem by interpolating _d rc; tið Þ between the
three nearest, filled cells if such where located in the first few adja-
cent layers. Otherwise, the value of the displacement field in empty
cells was set to the time-averaged fluid plus the terminal rising
velocity at this location.

Compared to LES, we used significantly larger time steps DtCFD
(time interval to assign a new velocity or displacement to a bubble
depending on its current location), Dtbubble (time interval for bubble
motion in Eq. (20); smaller than DtCFD to account for bubble-wall
contacts) and DtrCFD (sampling step of the recurrence process).
The values for the various simulations are provided in Table 3.

We carried out simulations over the same duration as for the
LES cases. Since rCFD involves the stochastic creation of the recur-
rence path, we ran each rCFD case three times and report the aver-
aged values in Section 4. However, the results from each run
differed only in minor details if any deviations could be found at
all.
4. Results

We first discuss the dynamics of the flow obtained from LES at
low and at high inlet velocity. We explain the equilibration proce-
dure and the choice of database size. Then, we present the results
Table 2
Time steps for LES for the low, high and time-dependent inlet velocity.

ulow uhigh u tð Þ
Dtbubble 5 � 10�4 s 2:5 � 10�4 s 2:5 � 10�4 s
DtCFD 5 � 10�4 s 2:5 � 10�4 s 2:5 � 10�4 s



Table 3
Time steps for the rCFD simulations. For the time-dependent inlet velocity, different
sampling steps depending on the current database were used.

ulow uhigh u tð Þ
Dtbubble 2:5 � 10�3 s 2:5 � 10�3 s 2:5 � 10�3 s
DtCFD 2:0 � 10�2 s 1:0 � 10�2 s 1:0 � 10�2 s
DtrCFD 2:0 � 10�2 s 1:0 � 10�2 s 1:0 � 10�2 s and 2:0 � 10�2 s
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of our fast rCFD calculations and highlight the importance of a suf-
ficient amount of information contained in the databases. We
answer the question if an extremely noisy, structureless distance
matrix implies a stochastic process without memory, and we
tackle the issue of flow conditions different from those in the data-
bases. Finally, we discuss certain case variations to demonstrate
the generality of our approach.
Fig. 3. Velocity probe values and their averages for the low inlet velocity. Even
though the velocity varied strongly and rapidly, the running temporal mean
converged quickly. In the jet regions, (a) the horizontal components of the means
4.1. Full-CFD analysis of the flow dynamics

We let our simulations equilibrate in a two-step procedure
before we could safely start sampling data for time-
extrapolation. First, we carried out single-phase LES until the total
kinetic energy in the system had converged such that it fluctuated
around a fixed value. Then, we began inserting bubbles. Besides the
time it took for them to spread throughout the domain, their pres-
ence also affected the flow dynamics mainly due to the displaced
volume. Fig. 2 shows that after approximately 12:5s, the bubble
hold-up was in equilibrium and oscillated only weakly around its
mean. We concluded that data sampling was permissible starting
from tequil ¼ 15s.

Next, we had to determine a sufficient duration for recording
our database. On the one hand, it needed to be large enough to con-
tain the essential flow dynamics, while on the other hand, it should
be as small as possible to reduce loading times and not exceed the
available RAM for the simulations. To estimate a reasonable length
of the time series, we monitored the velocity and its temporal aver-
age in the jet regions at �0:2m;�0:42m;0:0mð Þ and close to the
bottom at �0:6m;�1:8m; 0:0mð Þ. Once the mean values had con-
verged, we could hope to have covered the relevant dynamics of
the system. Notably, the converged mean values should satisfy
the symmetries of the flow, i.e. left–right reflection symmetry in
the present case. It can be seen in Fig. 3 that 2:5s of the low-
velocity flow (starting from tequil) were enough to obtain good
approximations for the mean velocity field. A slight asymmetry
was present close to the bottom, but it would have taken much
longer until it averaged out.

As pointed out in Section 1, the type of flow under investiga-
tion can exhibit very slow, ”wobbling” modes where one jet
Fig. 2. Total number of bubbles Nb for LES at low inlet velocity. After a steep, initial
increase, Nb exhibited some fluctuations before approaching the relatively constant
equilibrium value (shown as thin grey line).

reached opposite values and (b) the vertical components (almost) identical values
after about 2:5s. Notably, the vertical mean values close to the bottom (c) were
slightly different indicating a weak asymmetry of the flow over the observation
time.
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points more downwards than the other and vice versa. While this
effect was rather weak for the low inlet velocity, it was much
more pronounced for the higher one. Fig. 4 shows that the tem-
poral averages had by far not converged after the observation
period of 5 s. It would have taken such a long sampling time to
fully represent the dynamics that (i) the database size would have
exceeded any available RAM and (ii) the long CPU time for
recording would have rendered our subsequent fast simulations
pointless. Within a short monitoring duration corresponding to
a feasible database size, the low-velocity flow reached its
dynamic equilibrium, while the high-velocity case did not explore
all configurations dictated by symmetry considerations as can be



Fig. 5. Velocity fields averaged over 2:5s. While the low-velocity case (a) showed a
high degree of left–right symmetry, the high-velocity case (b) was clearly
asymmetric with the right-hand jet pointing further downwards than the left-
hand one. Note the different scales.

Fig. 4. Velocity probe values and their averages for the high inlet velocity. In the jet
region (a) and (b), the mean values varied only slowly after 5 s but had different
magnitudes in the two jets. Close to the bottom (c), the mean values differed from
each other and they still changed significantly even after 5 s. This corresponded to a
slow wobbling motion of the whole system.
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seen in Fig. 5. We reassure the worried reader that we deal with
this problem in Section 4.3.

Even though the flow fluctuated rapidly and, at least for the
low-velocity case, the mean had converged at all investigated
probing points, this did not mean that recurrences of large spatial
extension (and much less of system-wide nature) had occurred.
The distance matrices in Fig. 6, which were calculated over the
jet region, contain hardly any structures corresponding to reap-
pearing states. Most encountered configurations had a very similar,
large distance from all others, which is typical for high-
dimensional dynamics. Notably, a long-term drift can be seen for
the high-velocity case in Fig. 6b, which is connected to the low-
frequency oscillation of the wobbling jet.
8

4.2. rCFD for fixed, low inlet velocity

The utter absence of recurrences in the distance matrices of the
flow might cast doubts on the appropriateness of our time-
extrapolation approach being based on the method of analogues
(Cecconi et al., 2012). However, as stated in Section 2, rCFD pro-
duces a time-series with (approximately) the same statistical
moments as the underlying database even if no pronounced recur-
rences are present. The extrapolated time series might contain
rather abrupt variations, but this would be the case for turbulent
flows anyway. For this reason, previous rCFD studies of species
transport under turbulent conditions (Abbasi et al., 2020; Abbasi
et al., 2020), which faced the same issue of structureless distance
matrices, could achieve reasonable accuracy. Unfortunately, these
investigations only reached speed ups of 120 and 15 compared
to the underlying LES because the rapid fluctuations of the velocity
fields limited the time step sizes in the solution procedure of the
passive transport equations. In principle, the motion of discrete
bubbles in the present case was impacted by the same limitation
as continuous field representations. However, the time-averaged
bubble volume fraction fields displayed in Fig. 7 demonstrate that
this problem could be overcome with the use of the displacement
instead of the velocity field. While velocity-field-based rCFD with
large time steps failed to reproduce LES data (the ground truth),
rCFD calculations built upon the displacement field Eq. (32) gave
results in close agreement with LES. The overall bubble hold-up
was less affected by the choice of transport mechanism. Fig. 8 indi-
cates that both velocity- and displacement-field-based rCFD led to
values almost within the standard deviation around the time-
averaged LES result, i.e. to errors on the order of a few percent.



Fig. 6. Distance plots for (a) low and (b) high inlet velocity. Apart from the trivial
main diagonal, no pronounced structures are present. Only weak hints of short
segments parallel to the main diagonal can be seen. In (b), a clear drift towards
larger distances for longer separations (darker red regions at the borders of the
plots) indicates a slow, underlying shift of the dynamics connected to low-
frequency oscillations of the jets. Distances for both cases have been normalized to
0;1½ �, hence each plot needs to be interpreted separately with regard to its color
distribution.
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Notably, it was important to include dispersion effects even
though the displacement field already contained some of the influ-
ence of the rapidly varying velocity field. Nevertheless, it repre-
sented the average displacement over one time step of all
bubbles starting from the same cell. In addition, turbulent fluctua-
tions (v fluc in Eq. (33)) took care that bubbles which were located in
the same cell at a certain time were displaced to slightly different
positions after one step. Such a mechanism was important to pre-
vent the creation of artificial high-concentration spots due to recir-
culation. It can be seen in the LES results in Fig. 7a that such
regions existed and could be reproduced if fluctuations were
retained for bubble transport (cf. Fig. 7b), but failure to account
for dispersion led to erroneous enlargement of these spots (cf.
Fig. 7c). As a consequence, not only did the distribution of bubbles
in the domain come out wrong, but the total bubble number in the
domain also increased (cf. Fig. 8).

We conclude that it is possible to perform large-step rCFD cal-
culations even for rapidly fluctuating flows as long as one uses
the displacement field and includes the effect of turbulent disper-
sion. A notable speed up of about 610 compared to the LES runtime
9

was reached even though rCFD was carried out with only eight
threads and LES ran on 32. The computational costs required to
simulate 1 s of process time with LES and with rCFD are provided
in Table 4.

4.3. rCFD for fixed, high inlet velocity

As explained in Section 4.1, the flow dynamics at high inlet
velocity was significantly more complicated than at lower values
because very slow but rather pronounced jet oscillations emerged.
This made it completely unfeasible to record even a single pseudo-
period. However, a short time series of flow fields would likely
have an asymmetric temporal average, and consequently the
long-term bubble distribution would be asymmetric, too. Of
course, the long-term distribution from LES without any time-
extrapolation should be symmetric in accordance with the prob-
lem’s boundary conditions. This can be seen in Fig. 9a, where the
averaged bubble volume fraction over 30s of an LES run is dis-
played. However, the rCFD result from a time-extrapolated 2:5s
database in Fig. 9b is clearly asymmetric and does not match the
LES findings. While bubbles on the right-hand side were trans-
ported strongly downwards, those on the left-hand side remained
in the upper part of the domain and exited the mold at the top. As a
consequence, the total number of bubbles in the system was not
obtained correctly, either. Fig. 10 shows that after the initial rise
from an empty configuration, the bubble hold-up surpassed the
average LES value significantly. The downwards pointing jet drove
a large fraction of the inserted bubbles down into the mold where
some of them moved through the outlet, while many others
resided some time before making their way up again due to buoy-
ancy. This caused the total number of bubbles to be unrealistically
high. However, if the database was augmented with its mirrored
counterpart and sequences of flow fields were drawn from both
of them, none of the jets transported a significant number of bub-
bles too far down except very close to the walls. Hence, their over-
all number remained smaller and in good agreement with the LES
value. Similarly, the time-averaged spatial bubble concentration in
Fig. 9c improved significantly with the augmented database as
compared to the rather poor result of the un-symmetrized time
series in Fig. 9b. We achieved a speed up of approximately 500,
which was slightly lower than for the low-velocity case because
of the larger number of bubbles in the domain with higher inlet
velocity. Table 4 shows that runtimes both for LES and for rCFD
increased more than twice compared to the low-velocity case
because twice as many steps had to be taken and more bubbles
were present.

Given the very noisy, almost structureless distance matrices
Figs. 6a and b, we might question the importance of a reasonable
choice of recurrence path under turbulent conditions. Since all
states had a large distance from all others, the recurrence path con-
sisted of flow field intervals chained in a completely random fash-
ion. Hence, we might think one step further and ask if we could
take random, single steps, which would correspond to a process
without any memory. If such a strategy was found permissible,
one could describe bubble transport with only two fields: their
mean displacement and a stochastic contribution of the fluctua-
tions around the mean. The averaged bubble volume fraction field
in Fig. 9d obtained from a random sequence of single steps in the
symmetry-extended database pair and the total number of bubbles
in the domain provided in Fig. 10 seem to support this hypothesis.
However, closer inspection of the spatial bubble concentration in
Fig. 9d reveals that too few bubbles moved downwards into the
mold, whereas a slightly elevated number created vortex-like
structures in front of the two outlets from the SEN. While the
visual discrepancy from the LES result and rCFD calculation with
finite-length intervals in Figs. 9a and c was actually not very large,



Fig. 7. Time-averaged bubble volume fractions at low inlet velocity. The LES result (a) was best reproduced by the displacement-based rCFD calculation (b). A high bubble
concentration region was located at the upper edge of the outlet from the SEN, where recirculation occurred. Without the influence of fluctuations (c), the recirculation
regions extended too far from the SEN. Velocity-field-based rCFD (d) with the same time step size failed to predict a reasonable bubble distribution because bubbles could not
follow the strong curvature of the velocity field lines, which caused accumulation at the lower part of the SEN.

Fig. 8. Total number of bubbles Nb for different rCFD settings with low inlet
velocity. Velocity- and displacement-based (the latter both with and without
fluctuations) rCFD led to bubble hold-ups almost within the standard deviation of
the LES result (dashed gray lines around the solid gray line). If turbulent dispersion
effects were neglected, Nb increased slightly.

Table 4
Simulation runtimes per second process time. 32 threads were used for LES and eight
for rCFD. Equilibration and preprocessing times (costs to generate databases) are not
included.

LES rCFD

ulow 24333 s 40 s
uhigh 51594 s 104s
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a more quantitative analysis of the bubble behavior turned out to
be less forgiving. The number of bubbles leaving the system
10
through the bottom outlet provided in Table 5 differed massively
between the various rCFD settings. Only the case with a
symmetry-extended database could predict a similar value as
LES. Notably, the recurrence path consisting of random single steps
failed with a relative error of more than 40%.

We can conclude that a rather uniform distance matrix does not
imply a stochastic process without memory. Strong temporal cor-
relations may still be present and have a major influence, which
is proven by the fact that rCFD simulations with finite-length inter-
vals of flow fields outperformed those with random sequences of
single steps by far. Therefore, we are not overly optimistic that this
process could be described with only the bubble mean displace-
ment (or velocity) field and its variance.

4.4. Statistical interpolation for different inlet velocities

In the previous sections, it was shown that even short time ser-
ies of only 2:5s length contained the relevant dynamics of a turbu-
lent flow under fixed boundary conditions such that they could be
time-extrapolated to arbitrarily long durations. However, was the
information of two (or more) databases corresponding to not too
different conditions also sufficient to picture the properties of a
flow in between these conditions? In the present case, we success-
fully time-extrapolated flow fields corresponding to a low and a
high inlet velocity ulow and uhigh. Next, we attempted to obtain
the dynamics of a flow with an inlet condition ulow 6 u tð Þ 6 uhigh.
For the sake of simplicity, we considered a linear function

u tð Þ ¼ ulow þ t
s

uhigh � ulow
� �

0 6 t 6 s ð35Þ



Fig. 9. Time-averaged bubble volume fraction fields at high inlet velocity. The LES result (a) shows a high degree of left–right symmetry with most of the bubbles located in
the upper region and fewer going downwards. rCFD built upon a single, short database (b) could not reproduce this pattern because the right-hand jet moved too many
bubbles downwards and the left-hand jet too few. Extension with a second, mirrored database (c) gave results in much better agreement with LES (a). A randomly shuffled
recurrence path without any temporal correlation (d) led to a distribution with slightly too many bubbles in the upper part of the domain and too fewmoving downwards but
in qualitative agreement with the reference field.

Fig. 10. Total number of bubbles Nb for different rCFD settings with high inlet
velocity. While rCFD with a single database overpredicted the hold-up, the use of a
symmetry-extended, second database allowed for a significantly more accurate
result that deviated from LES only slightly. A recurrence path consisting of single
steps randomly picked from the database and its mirrored counterpart found a total
number of bubbles with similar accuracy.

Table 5
Number of bubbles leaving the domain through the bottom outlet per second. Values
have been obtain by fits to the last 15s of the simulations when flow conditions had
stabilized.

_nbottom rel. error

LES 493.4 –
single DB 387.7 �0.21

symmetry-ext. DBs 463.3 �0.06
random single steps 289.8 �0.41
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over a duration of s ¼ 30s. We carried out a corresponding LES to
generate reference data and an rCFD simulation built upon the
two databases (and their mirrored extensions) from the fixed inlet
velocities. At the beginning of the simulation, flow fields were
drawn mainly from the low-velocity databases, while at the end
of the run, mainly the high-velocity databases were used. In
between, fields were taken from both configurations. Even though
the results for bubble hold-up and spatial distribution shown in
Figs. 11 and 12 did not reach the same level of accuracy as those
in Sections 4.2 and 4.3, we regard them nevertheless as acceptable.
Given the admitted crudeness of this procedure, we find it even sur-
prising that some qualitative features could be reproduced if the
results were interpreted properly. As noted in previous work
(Lichtenegger et al., 2019), the statistical interpolation technique
implies that simulation output might need to be filtered to reduce
the noise due to rapid jumps between databases. Under these cir-
cumstances, the time-dependent bubble hold-up obtained with
rCFD agreed fairly well with that from LES. Notably, it was not sim-
ply given by the instantaneous, weighted average of the equilibrium
values corresponding to the low and high inlet velocity because it
took some time until the changes in the transport behavior had
developed. In Fig. 11, this is most obvious for t ¼ s where LES and
rCFD both led to approximately the same value significantly lower
than that obtained for fixed high inlet velocity shown in Fig. 10.
After a few more seconds corresponding to the mentioned delay,
Nb would have risen to this level for both LES and rCFD. Hence,
the statistical interpolation technique captured more of the dynam-
ics than a simple, linear superposition of the database averages,
which justifies its use at least as a rough approximation. However,



Fig. 11. Total number of bubbles Nb for linearly increasing inlet velocity. LES
predicted a more or less monotonous rise, whereas the statistical interpolation
technique of rCFD led to a more complicated curve with pronounced peaks.
However, temporal filtering produced a result in rough agreement with that from
LES.

Fig. 12. Time-averaged bubble volume fraction fields over the ramp duration of
30s. As expected, the field obtained from LES lay between the extreme cases of low
and high inlet velocity. rCFD could reproduced some qualitative features not too
close to the SEN outlet, but failed to capture all details like the exact angle of the
bubble stream or local accumulation points.

Fig. 13. Time-averaged bubble volume fraction fields for different bubble sizes at
low inlet velocity. LES results (a) confirmed the rCFD prediction (b) that smaller
bubbles which rise more slowly were transported farther into the mold before
ascending to the surface. The left-hand side of both plots corresponds to
simulations with smaller bubbles while the right-hand side stems from calculations
with the original diameter (cf. Section 4.2).
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one has to be aware that it cannot reproduce all details of highly
non-linear flow behavior. Fig. 12 demonstrates that while the pen-
etration depth of bubbles into the mold came out in qualitative
agreement, details like bubble stream angle or accumulation points
differed between LES and rCFD.

4.5. Selected case variations

The results presented so far demonstrate the capability of rCFD
to capture the most relevant aspects of bubble transport in a
12
non-trivial flow. We substantiate that these findings are not con-
nected to the specifics of the chosen case setups, but may be
assumed to hold more generally. To this end, we investigate the
influence of (i) bubble size and (ii) the choice of database during
the low-frequency oscillation cycle observed at high inlet
velocities. Regarding (i), due to their lower terminal rising velocity,
smaller bubbles follow the fluid flow more easily than larger ones,
which makes them more sensitive towards velocity fluctuations
and could pose a challenge for rCFD. Hence, we contrasted the
behavior of 5mm bubbles studied in the previous sections with
that of 1:5mm bubbles at the same inlet volume fraction. As
expected, Fig. 13 shows that smaller bubbles penetrated slightly
farther into the mold and gave rise to a smaller accumulation
region at the upper edge of the SEN than larger ones. The same
behavior was observed by LES and by rCFD with a similar accuracy
as for the case of larger bubbles. Notably, the volumetric hold-up
increased significantly. Due to their lower terminal rising velocity,
smaller bubbles remained in the domain for a longer duration.
Fig. 14 demonstrates that this effect was captured with high accu-
racy by rCFD.

While the unproblematic simulation of smaller-sized bubbles
did not come as a big surprise, issue (ii) was connected to a larger
amount of uncertainty. If recurrent dynamics changes slowly over
time and only a short duration can be captured in a database, how
important is the specific choice when to start sampling? In the cur-
rent case, slow jet oscillations would cause more or less asymmet-
ric configurations which we balanced by symmetrizing the
database. On the one hand, one might assume that less asymmetric



Fig. 14. Total volumetric hold-up for large and small bubbles. With the same inlet
condition, a larger amount of smaller bubbles (not only with regard to their number
but also to their total volume) was contained within the simulation domain. For
both diameters, the rCFD result agreed very well with LES.
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flow states can be symmetrized more easily, while on the other
hand, strongly asymmetric fields might pose a better representa-
tion of the long-term evolution that contains episodes of pro-
nounced asymmetry. We supplemented our calculations from
Section 4.3, which were based on the first 2:5s in Fig. 4 (DB 1) with
two more simulations. These employed databases of the same
length but were recorded later. DB 2 covered times 2:5s;5:0s½ �
and DB 3 5:0s;7:5s½ �. To provide some measure for the degree of
asymmetry, we computed the time-average of the velocity down-
ward components at the probing points close to the bottom.
Within DB 1, the mean value of the left-hand side probe was
43% larger than that on the right-hand side. In contrast, it was
Fig. 15. Line plots of the time-averaged bubble volume fraction for different choices
of recurrence database at high inlet velocity. Both in horizontal (a) and vertical
direction (b), rCFD results did not deviate significantly from each other when
databases had been obtained from different times in the low-frequency oscillation
cycle of the double jet.
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93% and 89% lower in DB 2 and DB 3, respectively. However,
Fig. 15 demonstrates that no significant differences could be found
in the final results of the time-averaged bubble volume fraction.
Neither the horizontal line plot at y ¼ �0:41m nor the vertical
one at x ¼ �0:15m showed any such indications. While minor
deviations were present, there was no obviously best or worst
choice between DB 1, 2 and 3 regardless of the fact that especially
DB 2 had to balance a much larger degree of asymmetry than DB 1.

At this point, a word of caution is in order. While it seems that
augmenting a database with its mirrored counterpart works well
to enforce reflection symmetry in cases of slow, asymmetric oscil-
lations, this trick can clearly not be used for processes which are
asymmetric by nature or which develop a permanent asymmetry.
For example, clogging or misalignment of the SEN may cause such
a behavior during continuous casting of steel (Vakhrushev et al.,
2022). Given only a short time series, it is not clear how much of
an observed lack of symmetry would persist over longer durations.
Of course, one might still create a mirrored database and weight it
differently, but a reasonable choice of weights could only be deter-
mined a posteriori if any relevant long-term data from the process
are available.
5. Conclusions, limitations and outlook

In this manuscript, we have reported on fast, data-assisted sim-
ulations of bubble transport in a turbulent double-jet at
Re ¼ 136000 and Re ¼ 272000. Besides the general finding that
we could carry out such simulations with speed ups of about 500
and more compared to LES with mostly good accuracy, we think
the following insights are particularly worth remembering:

(i) Despite the rapid spatio-temporal variations of the velocity
field, we could model bubble transport with time steps
and displacements significantly larger than the correspond-
ing scales of the turbulent flow by introducing the bubble
displacement field.

(ii) At sufficiently high inlet velocity, the double-jet configura-
tion developed a slow, oscillating mode where one jet
pointed more downwards than the other and vice versa.
Due to the low frequency of this motion, a short time series
was almost necessarily asymmetric and could not describe
the full dynamics of the flow. However, augmenting such a
database with its mirrored counterpart solved this problem
surprisingly well and led to results in close agreement with
LES calculations.

(iii) A distance matrix without any pronounced structures char-
acteristic for recurrent states does not imply a random pro-
cess without memory. The temporal correlations contained
in the time series can play a decisive role. Since a fully shuf-
fled recurrence path did not lead to satisfactory results in
our case, neither could a stochastic process built only upon
the mean flow and its variance.

(iv) Employing two databases corresponding to two different
inlet velocities ulow and uhigh, we were able to simulate bub-
ble transport for a time-varying inlet velocity between ulow

and uhigh with a recurrence path taking place alternatingly
in both databases. Even though the results were only in
rough agreement with detailed, costly LES, they gave at least
a qualitative impression of the actual flow behavior.

It goes without saying that we had to impose several simplifica-
tions in our study, which lend themselves for improvement in
future work. In our opinion, the most pressing issue from a
methodical point of view concerns the transition between flow
regimes as addressed above by (iv). The present interpolation tech-
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nique works to some degree, but it clearly cannot describe all
aspects of the complex dynamics. We will have to answer the
questions what it actually means to interpolate smoothly between
time series, and how the spatial structures of flow fields can be
transformed such that they still satisfy the underlying EOMs.

Further possibilities for advancing our work regard the inclu-
sion of additional thermo-physical aspects. While we considered
only the bubble phase in this study, we could picture transport
processes in the fluid phase in a completely analogous fashion. If
heat transfer was simulated over the course of hours, one could
determine a realistic temperature distribution and calculate solid-
ification of steel at the domain walls or the SEN (Vakhrushev et al.,
2021), which in turn would affect the flow dynamics. However,
partial clogging of the SEN could cause an asymmetric flow. It will
take a systematic investigation to understand if and how the sym-
metrization procedure used in this work can be refined so that a
temporary asymmetry due to low-frequency jet oscillations can
be mitigated without eliminating that induced by the changed
inflow behavior.

Overall, we think that the methodology at hand constitutes a
useful tool for very fast studies on turbulent and other recurrent
flows in general and a first step towards feasible long-term simu-
lations of continuous casting of steel in particular. Nevertheless,
a substantial amount of work remains to be addressed such that
these simulations become increasingly realistic and finally virtual
twins of industrial processes.
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Appendix A. Properties of the recurrence path

It is possible to establish a close relationship between the tem-
poral average, variance etc. of the original and of the extrapolated
time series. The following proof has been originally conducted by
one of us in his habilitation thesis (Lichtenegger, 2020) and is
reproduced here with the same notation.

The building law Eq. (28) for a recurrence path in a database of
N time steps may be turned into a matrix equation. We write the
current state of the system as an N-element vector t. If the n-th
step in the recurrence process corresponds to the l-th entry of
the database, it takes the form

t nð Þ
i ¼ di;l: ðA:1Þ
The transition to the next step nþ 1 corresponds to the matrix
operation

t nþ1ð Þ ¼ 1� bP jump

� �
S þ bP jumpJ

� �
t nð Þ; ðA:2Þ
14
where bP jump is a random number with value 0 or 1 with probabili-
ties 1� Pjump and Pjump, respectively. The shift and jump matrices

Si;j ¼ di;mod jþ1;Nð Þ ðA:3Þ
Ji;j ¼ di;mod sim jð Þþ1;Nð Þ ðA:4Þ
give rise to a transition to the subsequent state and a jump in the
recurrence statistics, respectively. In S, the only entries different
from 0 are located at an off-diagonal with value 1. J contains
entries of 1 for those indices where the most similar state to
the column index equals the row index minus 1. The modulo
operation both in S and J resembles periodic boundary
conditions.

To obtain the probability distribution of states, we replace bP jump

with Pjump, i.e. instead of a random process returning either 0 or 1,
we use a scalar with fixed value 0 6 Pjump 6 1. The long-term dis-
tribution of states is closely connected to properties of the one-
step transfer matrix

T � 1� Pjump
� �

S þ PjumpJ: ðA:5Þ
Assuming that the distribution will converge after repeated applica-
tion of T , we look for that matrix T 1ð Þ that satisfies
T 1ð Þ ¼ T 1ð ÞT ¼ TT 1ð Þ. The first equality corresponds to

T 1ð Þ
i;j ¼ 1� Pjump

� �
T 1ð Þ
i;mod jþ1;Nð Þ þ Pjump

X
k

T 1ð Þ
i;k Jk;j; ðA:6Þ

which is solved by any t 1ð Þ
i � T 1ð Þ

i;j as long as

8j :
X
k

Jk;j ¼ 1: ðA:7Þ

Eq. (A.7) is satisfied by a jump matrix of the form Eq. (A.4), but also
by the more general case of possible transitions to several similar
states.

The second of the above conditions translates into

t 1ð Þ
i ¼ 1� Pjump

� �
t 1ð Þ
mod i�1;Nð Þ þ Pjump

X
k

Ji;kt
1ð Þ
k ; ðA:8Þ

where we have already inserted t 1ð Þ
i . It can be seen easily that

t 1ð Þ
i ¼ 1=N solves Eq. (A.8) if

8i :
X
k

Ji;k ¼ 1; ðA:9Þ

which means that no two different states jump to the same target.
This corresponds to a uniform distribution of visited states, which
implies that any long-term recurrence path leads to the same statis-
tical moments, in particular mean and standard deviation, as the
underlying database.

However, if Eq. (A.9) does not hold, the final distribution t 1ð Þ
i is

not uniform. We expand it into a power series

t 1ð Þ
i ¼ t 1ð Þ

i;0 þ Pjumpt
1ð Þ
i;1 þ P2

jumpt
1ð Þ
i;2 þ . . . ðA:10Þ

If the jump probability Pjump is not too large, it suffices to retain only
the first non-trivial term in Eq. (A.10). Then, Eq. (A.8) becomes

t 1ð Þ
i;0 ¼ t 1ð Þ

mod i�1;Nð Þ;0 ðA:11Þ
t 1ð Þ
i;1 ¼ t 1ð Þ

mod i�1;Nð Þ;1 � t 1ð Þ
mod i�1;Nð Þ;0 þ

X
k

Ji;kt
1ð Þ
k;0 : ðA:12Þ

With the condition that t 1ð Þ
i sums up to 1, we get

t 1ð Þ
i;0 ¼ 1

N
ðA:13Þ

t 1ð Þ
i;1 ¼ t 1ð Þ

mod i�1;Nð Þ;1 �
1� ni

N
; ðA:14Þ
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where ni �
P

kJi;k represents the number of states that jump to i. Eq.
(A.14) shows that those states are encountered less frequently in
the recurrence path, which are not targets from others, even more
so in case other such states come before them.

Nevertheless, the resulting distribution t 1ð Þ
i � t 1ð Þ

i;0 þ Pjumpt
1ð Þ
i;1

will remain almost uniform if the ni are not too large and a rather
small value is picked for Pjump. The latter is limited by the database
size, whereas the ni are determined by the properties of the recur-
rence process. If jumps aim at the most similar state, this could
lead to strongly varying ni. Alternatively, one could use a jump
matrix J where every state jumps to a different target with a high
but not necessarily the highest degree of similarity. Such a J may
be constructed with the Hungarian algorithm (Kuhn, 1955) if
necessary.
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