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Digital technologies are transforming industry at all levels. Steel has the 
opportunity to lead all heavy industries as an early adopter of specific 
digital technologies to improve our sustainability and competitiveness. 
This column is part of AIST’s strategy to become the epicenter for steel’s 
digital transformation, by providing a variety of platforms to showcase and 
disseminate Industry 4.0 knowledge specific for steel manufacturing, from 
big-picture concepts to specific processes.

Introduction 
Given the urgent challenges facing 
the steel industry in the context of 
decarbonization, the significance of 
developing innovative solutions is 
becoming increasingly important. 
The transition to new production 
routes poses a significant challenge, 
particularly for the secondary met-
allurgical (SecMet) process, which 
acts as the final step before continu-
ous casting. SecMet plays a decisive 
role for the final alloy composition 
and the modification of nonmetallic 
inclusions (NMI) in the steel and 
has, therefore, become indispens-
able in modern steel works. With 
the ongoing modernization of the 
steel industry and the increasing 
amount of data collected in recent 
years, opportunities are emerging to 
gain new insights through improved 
data mining and statistical learning 
methods as well as more efficient 
handling of large amounts of data. 
This new approach contributes to 
an improved understanding of the 
processes and optimization of the 
boundary conditions of classical 
thermodynamic models. Numerous 
works on solely data-driven model-
ing of SecMet processes (e.g., tem-
perature models and alloy yield 
models) can already be found in 
the literature.1–4 On the other hand, 
many complex kinetic and thermo-
dynamic models describe the indi-
vidual SecMet aggregates.5–8 This 
work intends to show how these 

two disciplines can be combined to 
take the modeling of metallurgical 
processes to the next level. Fig. 1 
illustrates the concept of the current 
project and how thermodynamic 
modeling will benefit from the sta-
tistical analysis of large amounts 
of production data. The presented 
work is divided into two packages: 
The first one deals with the devel-
opment of a desktop application 
(“i-clean”) to simulate the SecMet 
process from the tapping at the 
basic oxygen furnace (BOF) until 
the ladle furnace (LF). The second 
part is dedicated to a comprehensive 
statistical analysis to investigate the 
yield rates of different alloy addi-
tions at the LF and how the heating 
process could act as a carbon source.

The following chapters describe 
the software architecture and the 
implementation of the individual 
boundary conditions. In addition, 
a description will be given of how 
large amounts of data were pro-
cessed and which methods were 
used to acquire new knowledge 
from the data-driven approach. 
Subsequently, the results from the 
statistical analysis are discussed. 
Finally, for the sake of demonstra-
tion, a use case for SecMet treat-
ment is simulated, and the results 
of calculations are compared to the 
actual measured values.

Looking for  
more information  
on digitalization? 
Visit AIST’s free Digitalization 
Applications 101 module at  
AIST.org/DA101.
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Description of “i-clean” Software 
To simulate the SecMet process (from BOF tapping to 
LF), a desktop application called “i-clean” was devel-
oped in Python. This application uses an interface via 
ChemApp™ Python to the thermodynamic software 
database FactSage™ and is based on the concept of 
the effective equilibrium reaction zone (EERZ).7 The 
software architecture of the GUI application is shown 
in Fig.  2. The application itself can be divided into the 
following three sections.

The preprocessing module enables the automatic loading 
or manual entry of all input parameters and required 
data for the simulation. It is also possible to export and 
reload modified process sequences. Essential input data 
are the three databases “alloy database,” “slag former 
database” and “thermodynamic database.” The first one 
defines all compositions of the individual alloy additions 
that may be added throughout the simulated SecMet 
process. In addition, the dissolution duration and den-
sity of the material is given. Based on the density, it is 
possible to determine whether an alloy addition will be 
found in the liquid steel or whether it will f loat and will 
be located at the steel/slag interface. Furthermore, each 
alloy addition is given a unique name as an identification 
key. The “slag former database” contains the same infor-
mation as already mentioned for the “alloy database.” 
The only difference is that the density is not needed, as 
it is assumed that slag formers will go directly to the slag.  

The aforementioned two databases are defined as 
Excel files and imported automatically by the software. 
The “thermodynamic database” is made available as 
a ChemSage™ file (*.cst) by exporting it via FactSage 
and reading it via the ChemApp Python interface. 
The ChemSage file contains all information regard-
ing the selected components, phases and units. Besides 
the databases, the software application also requires a 
detailed process description of the SecMet treatment. 
This includes the material additions (kg), the purging 
time (Nm3 h-1), and all the temperature trends based 
on the actual temperature measurements at the respec-
tive process step, as well as the heating power (kWh) 
at the LF. It is important to point out that all events 
contain the actual timestamp recorded at the steel plant. 
Moreover, each process phase (e.g., tapping, transport 
or ladle furnace) is defined according to the production 
logs, allowing the individual material additions and ladle 
treatments to be allocated to the respective ladle station 
in the simulation. The quantity of tapped steel at the BOF 
and the carryover slag must be defined. Further process 
information that is required for a calculation is the ladle 
radius and the composition of the refractory lining of 
the ladle in the steel and slag area. Finally, the metal-
lurgical process boundary conditions (e.g., mass transfer 
coefficient, inclusion f lotation rate, refractory wear, etc.) 
as well as the initial steel and slag composition must be 
specified. The composition corresponds to the measured 
analysis at the end of the BOF process just before tapping. 

The hybrid (data-driven, mechanistic and thermodynamic) model concept.

Figure 1

http://www.aist.org
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As components, the major elements of the steel (e.g., C, Si, 
Mn, S, P, Cr, Al, Ti, O) and the main components of a 
SecMet slag (e.g., CaO, Al2O3, SiO2, MgO, MnO, FeO) 
are considered.

The solver applies the EERZ method7 and, thus, cou-
ples thermodynamics with kinetics. The implementation 
of the EERZ method makes it possible to describe the 
change in the chemical composition of the steel, the non-
metallic inclusions, and the slag during the entire SecMet 
process. The EERZ method7 attempts to simplify com-
plex kinetic processes. In contrast to the coupled reaction 
models, the mass transfer coefficient ki is assumed to be 
identical for all species of a specific bulk material. This 
leads to Eq. 1, where RA (kg) is the reacting amount,  
k (m s-1) is the overall mass transfer 
coefficient, A (m²) is the reaction area 
and Dt (s) is the time step:

RA = (krA) Dt

	 (Eq. 1)

As an example, the EERZ concept 
for the reaction zone between steel 
and slag is described in Fig. 3, where 
RASt and RASl define the input masses 
before the calculation of the thermody-
namic equilibrium, and EA'St and EA'Sl 
ref lect the material that is returned to 
the corresponding bulk after calculat-
ing the equilibrium.

The EERZs considered within a steel ladle and the 
f low chart for the SecMet process model solver are 
shown in Figs. 4a and 4b. At the start of the simulation, 
the respective process influences (e.g., material addi-
tion, heating, purging and the current temperature) are 
defined as boundary conditions for each time step Dt. At 
this point, it should be mentioned that the temperature 
boundary condition is based on a linear interpolation 
between the actual measured temperatures. Also, no 
complex dissolution models were implemented for the 
alloy additions and slag formers due to the nature of mac-
roscopic modeling. An assumption is made that all mate-
rial mixes homogeneously within the steel or slag, respec-
tively. The dissolution is completed between 30 seconds 

Representation of the software architecture of the Python GUI application “i-clean.”

Figure 2

Schematic demonstration of the effective equilibrium reaction zone 
(EERZ) concept for the steel/slag reaction zone.

Figure 3

http://www.aist.org
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to 2 minutes, depending on the added material. Note that 
there are three different cases depending on which mate-
rial is added. Alloy addition has a high density (f lotation 

= false); the material is dissolved in the steel bulk. If the 
density is low and the addition f loats, the alloy is added to 
zone 1 (steel/slag interface). In the present work, f loating 
was only assumed for the two deoxidizers and alloying 
agents, Al and C. All slag formers are taken into account 
in the slag bulk equilibrium calculation. According to 
the f low chart, the next process step is the calculation of 
the current inclusion quantity. During the tapping phase, 
the inclusions are separated at a constant rate (after You 
et al.5), although it is evident that the actual rate depends 
on the inclusion size distribution and the f low conditions 
in the steel bath. This fitting parameter will be optimized 
in future studies using inclusion landscape data combined 
with the production data. For the ladle furnace, the depo-
sition rate of the NMI is handled using Eqs. 2 and 3.9

� � �
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�
�

�

�
�

�

�
�

nRT
m

P
P

t

o

ln

(Eq. 2)

kfloat = (0.57 ± 0.15)e(0.28 ± 0.08)

(Eq. 3)

where 
e (W t-1) = the effective stirring power per unit steel, 
n (mol s-1) = the molar gas f lowrate, 
R ( J mol-1 K-1) = the ideal gas constant, 
t (K) = the temperature, 
m (kg) = the weight of the steel,
Pt (atm) = the total gas pressure at the bottom of the ladle,
P0 (atm) = the pressure at the melt surface and

Considered EERZ within a steel ladle (a) and flow chart of the SecMet process model solver (b).

Figure 4

(a)

(b)

http://www.aist.org
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kfloat (m s-1) = the purging rate-dependent deposition rate 
of the NMI.
The following simulation step examines the process 

phase (tapping, transport or ladle furnace). Different 
zones are executed depending on the selected process 
phase. Six zones between various interfaces are defined. 
Two additional reaction zones are required to calculate 
the thermodynamic equilibrium in the steel or slag bulk 
material. Zone 1 describes the reaction zone at the inter-
face between the steel bath and the slag. For the tapping 
process, the mass transfer coefficient for the steel and the 
slag was defined according to You et al.5 For LF treat-
ment, Eqs. 2 and 4 are used to describe the mass transfer 
coefficient kSteel (m s-1).9 The assumption is made that the 
mass transfer coefficient of the slag kSlag (m s-1) is one-
twentieth of that of the steel due to its higher viscosity and 
lower diffusion properties (see Eq. 5).

kSteel = (0.006 ± 0.002) e1.4 ± 0.09

(Eq. 4)

k
k

Slag
Steel=
20

(Eq. 5)

For zone 2 (open-eye formation), the oxygen and 
nitrogen pickup into the steel is modeled according to 
Zhang et al.10 Here, the pickup depends on the purging 
rate. Within zone 3, carbon is added to the system due to 
thermal heating using carbon electrodes. For zones 4–6, 
measurements of refractory wear were carried out by the 
industrial partner voestalpine Stahl GmbH using the 
Ferrotron LaCam® system at different ladle lifetimes. An 
average wear rate of 50 kg of refractory material per melt 
was determined, with two-thirds of the material coming 
from the steel zone and a third from the slag refractory 
material. At the current stage of the software develop-
ment, it is assumed that all of the refractory wear is due 
to erosion. Therefore, all of the material is deposited into 
the slag, although it is clear that there is some reaction 
between the refractory material and the steel/slag. This 
is currently being investigated and will be defined via 
different dissolution models and the EERZ approach. 
However, in the current software version, the 50 kg of 
worn material is distributed over the entire treatment 
period.

If the current simulation stage is the converter tap-
ping process, zones Z1, Z2, Z4, Z5 and Z6 are applied. 
Furthermore, the amount of tapped steel and carryover 
slag per time step is transferred to the bulk material, 
which is subsequently considered when calculating the 
thermodynamic equilibrium for the bulk regions. With 
the ladle being transported from the tapping position 
to the ladle furnace, only zones Z1, Z4, Z5 and Z6 are 

Postprocessing module of the i-clean software. Examination of individual components of the steel bulk.

Figure 5

http://www.aist.org
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applied. Once the ladle furnace treatment has started, all 
zones are performed simultaneously for each time step. 
After each reaction zone calculation, the gases produced 
(e.g., CO) are removed from the system, as they no longer 
participate in the process. Once the individual reaction 
zones have been carried out, the material of the EERZ is 
transported back to the respective bulk, whereby an addi-
tional equilibrium is calculated. Finally, the time step is 
increased by Δt, and the described procedure is repeated 
until the entire secondary metallurgical treatment has 
been simulated.

The postprocessing module enables a detailed graphi-
cal and numerical analysis of the results. Constituents 
or components of individual phases as well as the com-
ponents of the respective bulk material can be plotted. 
Individual process influences such as alloy additions, steel 
melt temperature (based on actual temperature measure-
ments), heating and purging quantities can also be repre-
sented. Furthermore, the steel and slag quantity develop-
ment over the entire process can be displayed. The appli-
cation offers the option of loading the measured steel and 
slag analyses and comparing the calculated compositions 
with them. Fig. 5 shows an example of the postprocess-
ing module used to analyze the calculated C, Si and Al 
content over the entire SecMet process. Whenever there 
were abrupt changes in the alloying element profiles, the 
corresponding alloying agent was added to the melt.

Python version 3.9.7, PySide6 version 6.5.2, FactSage 
version 8.3, and ChemApp for Python version 8.2.3 were 
used to develop the software.

Statistical Analysis of Production Data 
To determine the alloy yield rates of the individual addi-
tions and the influence of heating which acts as a carbon 
source, all inf luencing parameters must be predicted 
with a high level of accuracy using statistical methods. 
This critical step can be achieved by using a simple but 
powerful technique, multiple linear regression (MLR). 
Once the prediction model has 
been developed, one can use the 
estimated coefficients b̂n, and 
thus, calculate the variables of 
interest. The linear regression in 
the multidimensional case fol-
lows Eq. 6:11

y = ŷ + e = b̂1x1 + b̂1x2 + ... + 
b̂nxn + e

(Eq. 6)

where 
ŷ = the estimated target vector, 
xn = the vector of an indepen-

dent variable, 

y = the actual measured value of the target variable and 
e = the residuals vector. 

In general, an attempt is made to minimize the residu-
als vector e and thus obtain the best possible coefficients 
for the problem at hand. Note that an intercept variable 
was omitted for the entire modeling, as the prediction 
model was used to determine the change in the cor-
responding alloy element (∆yAlloy). The formula for the 
calculation of ∆yAlloy (wt. %) corresponds to Eq. 7:

∆yAlloy = ∆yAlloy,target – ∆yAlloy,initial

(Eq. 7)

where 
∆yAlloy,target (wt. %) = the last sample taken in the SecMet 

and 
∆yAlloy,initial (wt. %) = the first sample taken in the SecMet. 

A data-driven approach to define operational bound-
ary conditions requires a large amount of data as there 
are many potential inf luencing factors during SecMet 
treatment. voestalpine Stahl GmbH provided the optical 
emission spectroscopy-pulse distributive analysis (OES-
PDA) and process data for the entire annual production 
of 2022 to carry out the statistical investigation. This 
data set comprised 31,268 melts, whereby various data 
preparation and cleansing steps were carried out, which 
reduced the data set to 10,756 observations. The data 
set ultimately contained 116 steel grades, ref lecting the 
majority of the fully Al-deoxidized steel grades. Only 
steel grades that were completely deoxidized with Al dur-
ing the tapping process were examined in this study. The 
statistical data analysis also included the process influ-
ences of the Ruhrstahl-Heraeus vacuum plant, meaning 
that the yield rates determined should be valid for the 
entire SecMet process. Finally, the data preparation 

Schematic illustration of a simplified secondary metallurgy (SecMet) 
treatment sequence.

Figure 6

http://www.aist.org
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provided a data set that substantially simplifies the sec-
ondary metallurgical treatment. All material additions 
and process influences (e.g., heating, purging, vacuum 
treatment) between the first and last SecMet steel sample 
were accumulated and represented by one value per 
process influence (see Fig. 6). The statistical evaluation 
included the process influence parameters, the process 
duration, and approximately 25 other alloy additions 
could be considered as influencing parameters for further 
statistical analysis.

A train-validation-test data split of 60:30:10 was car-
ried out to generalize better using the created prediction 
model. As mentioned earlier, the MLR was used for the 
statistical analysis. The iterative forward selection meth-
od was applied.12,13 The functionality of this selection 
method can be summarized as follows (where the param-
eter p represents the number of independent variables):
1.	 	First, the null model MO is defined, which ini-

tially has no independent variables.
2.	For k = 1, 2, … , p – 1:

a.	 Based on the Mk model, further p – k models 
that use an additional variable are trained 
using the train data.

b.	 The model with the best goodness criteria 
based on the predictive ability using the 
validation data set is selected for each 
iteration step.

3.	Select the best model of all iteration steps (MO, 
..., Mk) with regard to the determined goodness 
criteria.

Since a model with a large number of variables always 
provides a better result for the R2, the quality criterion 
R2

adjusted, which takes model complexity into account, was 
selected for this study. Based on the training data set, the 
degree of variance explanation, which directly impacts 
the number of selected inf luencing parameters, was 
chosen to be 0.95. Python version 3.9.7, numpy version 
1.23.5, pandas version 1.5.2 and scikit-learn version 1.2.0 
were used for statistical analysis.

Discussion of the Statistical Analysis 
Results 
Due to the large number of alloying elements evaluated, 
only the C and Si prediction of the respective regres-
sion model is presented in detail in the following section. 
Nevertheless, Table 1 shows all yield rates determined 
during the investigation, which have been used for the 
simulation. It was found that the simplified approach 
describing the SecMet process route leads to outstanding 
results for all investigated alloying elements (except Al 
due to its usage as the main deoxidation element). The 
results of the MLR prediction for the two alloying ele-
ments using the test data set are illustrated in Figs. 7a and 
7b. Note that the error bars in the two figures are only 
shown for better interpretability and in no way represent 
the tolerances specified by voestalpine Stahl GmbH.  

Comparison between the predicted and measured values for the carbon content (a) and the silicon content (b).

Figure 7

(a) (b)
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The C-model proved excellent predictive ability with 
92.4% and 98.5% of all predictions within the green 
and yellow error tolerances, respectively. For Si, 87.6% 
and 98.7% of the predictions could be found within the 
0.02 and 0.04 wt. % deviation areas. The C or Si predic-
tion model coefficients showed that all material addi-
tions where C, or respectively Si, has a major or minor 
share of the composition were identified as significant. 
Additionally, it could be determined for the carbon pre-
diction that heating at the ladle furnace is associated with 
a low, however not neglectable, carbon input of 0.008 
ppm per kWh.

The alloy yield rates can be calculated with the esti-
mated coefficients, a mean ladle weight of 175 tons, and 
the average composition of the alloy addition. Those 
can be seen in Table 1. The evaluation showed that the 
mass balance is largely confirmed when alloying agents 
are added for a completely deoxidized steel in the ladle 
furnace. Only small amounts of the alloy additive end up 
in the slag due to oxidation. In the case of aluminum, the 

model showed that the yield varies greatly depending on 
the addition time. At the beginning of the LF treatment, 
where higher amounts of less stable oxides in the slag and 
dissolved oxygen in the steel are still expected, an estima-
tion of aluminum was difficult. However, aluminum yield 
rates close to 1 are achieved once the melt is completely 
killed. Only FeSi75 shows a lower value of 0.8 for the 
yield rate.

The C and Al addition yield rates during tapping differ 
significantly from those of the subsequent ladle treatment. 
This is partly due to the burn-off during the alloying pro-
cess and the highly dissolved oxygen content in the steel. 
Another source of oxygen is the large quantity of carry-
over slag from the converter, which has high proportions 
of FeO and MnO and, therefore, also contributes to the 
low yield. As no statistical analysis of the tapping process 
was carried out within the scope of the present work, 
literature values provided the required boundary condi-
tions for this process stage.5

Discussion of Simulation Results 
The calculation results of “i-clean” software will be 
discussed in this section for a selected case study car-
ried out at voestalpine Stahl Linz. The simulation was 
done starting from tapping at the BOF to the end of the 
LF. The alloy yields were adjusted in the alloy database 
according to the new findings presented in the previous 
chapter. In addition, the influence of heating in terms of 
carbon input was also taken into account in the model-
ing. FactSage databases “FSstel”, “FToxid” and “FactPS” 
were used for the thermodynamic calculations. The ini-
tial and boundary conditions and all process influences 
for the simulation calculation can be found in Tables 2–9. 
Table 2 provides the steel composition at the end of the 
converter-blowing process. Table 3 describes the com-
position of the carryover slag. FeTotal, MnTotal and STotal 

Yield Rates During the SecMet Treatment
Material 

name
Alloy yield 

rate [-]
Material 

name
Alloy yield 

rate [-]

Al-Granalia 
(during 

SecMet)
0.96 C (during 

SecMet) 0.98

SiMn 0.95 FeSi75 0.80

FeMn low. P 1 FeMn78.5 0.95

FeCr 1 MnAffine 0.934

Table 1

Steel Composition at the End of the Basic Oxygen 
Furnace Process

Element wt. % Element wt. %

Carbon 0.0209 Aluminum 0.0000

Silicon 0.0020 Titanium 0.0010

Manganese 0.1250 Chromium 0.0160

Sulfur 0.0034 Oxygen 0.0607

Phosphorus 0.0080 Nitrogen 0.0027

Table 2

Carryover Slag Composition
Component wt. % Component wt. %

CaO 46.88 P2O5 1.24

SiO2 8.04 TiO2 0.35

MgO 7.59 FeTotal 22.7

Al2O3 0.01 MnTotal 7.59

Cr2O3 0.29 STotal 0.03

Table 3

http://www.aist.org
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Process Boundary Conditions
Name Value Unit

Ladle radius 1.57 m

Tapped steel mass 172,000 kg

Carryover slag mass 600 kg

Time step 20 s

Table 4

Purging Schedule
Timestamp [min] Duration [min] Rate [Nm3 h-1]

3 3 70

33 7 90

48 15 90

Table 7

Heating Schedule
Timestamp [min] Duration [min] Amount [kWh]

24 1 390

28 3 1,013

51 5 1,502

56 2 510

59 3 1,003

Table 8

Additions During SecMet Treatment
Name Timestamp [min] Amount [kg] Name Timestamp [min] Amount [kg]

Carbon 1 24 MnAffine 3 2,593

Al-Granalia 2 314 FeMn78.5 3 1,406

Magensite 3 176 Al-Granalia 28 167

Lime 4 828 Lime 50 301

Top slag 4 297 FeSi 51 60

FeCr 3 327 MnAffine 51 267

FeSi 3 304 FeCr 51 203

Table 6

Process Schedule During the SecMet Treatment
Process phase Timestamp [min] Duration [min]

Tapping 0 6

Transport 6 17

Ladle furnace 23 48

Table 5

http://www.aist.org
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correspond to the total amount of the respective element 
in all compounds in the slag sample.

Table 4 describes the remaining boundary conditions 
the software requires, and Table 5 shows the schedule for 
the individual process phases.

Tables 6–8 contain all information regarding the pro-
cess influencing parameters. In the SecMet treatment, 
predeoxidation was carried out directly after tapping 
by adding C. Subsequently, Al was added as the main 
deoxidizing agent, followed by all other slag formers 
and alloying agents. Only small amounts of Al granules, 
FeSi, MnAffine, FeCr and lime were added during the 
ladle furnace treatment. Bottom purging was applied 
both during tapping and in the ladle furnace. A total of 

Comparison of the simulated and the measured alloy contents over the entire SecMet process.

Figure 8

Measured Temperatures During SecMet Treatment
Time stamp [min] Measured temperature [°C]

0 1,634

9 1,593

32 1,589

59 1,598

76 1,613

Table 9

http://www.aist.org
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4,418 kWh over five arcing periods was required to heat 
the melt at the ladle furnace.

Finally, the simulation tool needs the actual tempera-
ture of the melt. The temperatures measured at the end 
of the converter process and during the SecMet treatment 
are shown in Table 9.

The results of the simulation calculation for the alloy 
and by-elements can be seen in Fig. 8. In addition, the 
process influences are also presented alongside them 
(except for heating, as this only significantly affects the 
carbon content in the current model). The results indicate 
good agreement between the calculated and measured 
values for all the main alloying elements. Due to the 
various additions directly at the beginning of the tapping 

process, there is an immediate increase in the alloying 
element content. With the addition of Al, the entire melt 
is deoxidized and a large part of the unstable oxides (FeO 
and MnO) in the slag are reduced, so the mass balance 
broadly applies to all other elements. The additional 
tapped mass can explain the subsequent decrease of the 
individual alloy components during the further course of 
the process, which leads to a “dilution” of the melt. Upon 
entering the transport phase, the compositions largely 
stabilize. Nevertheless, it is worth noting once again 
that the nonmetallic inclusions formed are continuously 
removed from the melt, meaning that the total percent-
age of aluminum is constantly reduced. Furthermore, a 
slightly decreasing trend can be identified for Si and an 

Comparison of the simulated and measured slag contents and the total Al2O3 in all nonmetallic inclusions over the 
entire SecMet process.

Figure 9
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increasing trend for Mn. These trends can be explained 
by the interaction between the molten steel and the slag, 
as Si dissolved in the steel bath reacts with the MnO and 
the FeO from the slag. Once the ladle furnace is reached 
and Al is added, it significantly increases. Subsequently, 
the Al again reduces oxides from the slag. Here, the pre-
viously oxidized SiO2 and the remaining MnO and FeO 
are removed from the slag. As expected, the simulation 
results ref lect the ongoing kinetics and thus an interac-
tion between steel and slag, especially during the purging 
gas treatment. At the end of the ladle treatment, the third 
alloying step occurs, whereby all target values are set as 
required.

Clear trends can be seen for the impurity elements 
P and S. The P2O5-rich carryover slag results in con-
tinuous rephosphorization throughout the process. On 
the other hand, the concentration of S continuously 
decreases as soon as the melt has been completely killed. 
The influence of the strong kinetics on desulfurization 
during the purging periods is obvious. If the measured 
and calculated alloy contents are compared, the results 
can be summarized as follows: The concentration of 
Mn is slightly overestimated by the simulation tool but 
still shows a maximum deviation of approximately 0.1 
wt. % over the entire process; Cr could be determined 
with a maximum deviation of 100 ppm; for C, the devia-
tion was even lower with a maximum of 25 ppm; the 
calculated Si content showed a deviation of 0.018 wt. % 
compared to the first sample taken. Later, the simulation 
result converged to within a few 10 ppm compared to the 
actual measured values; Al could also be predicted with 
high accuracy. In the second sample, Al showed a higher 
deviation (0.3 wt. %) from the measured value. At the two 
other measurement points, the deviation was significantly 
lower at less than 0.1 wt. %. The P content was 10 ppm 
higher at the first two sampling times. Toward the end of 
the SecMet treatment, the simulation result approaches 
the measured result to 5 ppm; for sulfur, the deviations 
are also 10 ppm at the beginning and decline over the 
entire SecMet process.

Fig. 9 shows the calculated and measured composition 
of the main slag components and the total Al2O3 over the 
treatment period. Various deoxidizing agents, alloying 
materials and slag formers are added at the beginning of 
the treatment, which initially results in very strong f luc-
tuations in the slag composition. Once tapping is com-
pleted, the SiO2 and Al2O3 content of the slag gradually 
increases, which is consistent with the results concerning 
the alloying elements in the steel bulk. The increase in 
SiO2 and Al2O3 is counterbalanced by the reduction 
of MnO and FeO from the slag. If MnO and FeO are 
largely reduced from the slag, the SiO2 is subsequently 
reduced back by Al2O3.

The increased kinetics due to the argon purging 
phases at the ladle furnace make this effect even more 
apparent. Finally, a small amount of lime is added at the 
ladle furnace, explaining the changes in the calculated 

chemical compositions of the slag. From this final addi-
tion, a thermodynamic equilibrium between the steel 
and slag appears to have been largely established at the 
latest. As with the alloying elements, good agreement 
was generally achieved between the calculated results 
and the measured values. The CaO showed the highest 
deviations in the presented calculation. The difference 
between the measured and calculated values was about 
1 wt. % for the first sample, but for the second sample it 
was already approximately 4 wt. %. Al2O3 was slightly 
underestimated by the calculation at the beginning (–3 
wt. %); however, it becomes apparent that the values con-
verged to 1 wt. % deviance toward the end of the simula-
tion. For the MgO content, a discrepancy of 2 wt. % was 
achieved for both samples. For MnO and FeO, deviations 
of less than 2 wt. % were achieved, whereby the developed 
software assumes a complete reduction of the slag by the 
end of the calculation because of the continuous steel/
slag interface reaction. One possible reason for the larger 
deviations might be that, in contrast to steel sampling, the 
slag sample is not taken automatically by a manipulator, 
but a small slag sample is taken manually from the sur-
face of the slag. Obviously, this sampling procedure may 
lead to a greater deviation from the calculated results 
due to the inhomogeneous slag. As mentioned earlier, the 
nonmetallic inclusions in the steel were also taken into 
account in addition to the steel and slag compositions. 
However, it turned out that Al inclusions were almost 
exclusively present during the entire process due to the 
use of Al as the main deoxidizing agent. For this reason, 
the total Al2O3 content can be assumed to be representa-
tive for the total oxygen content in the steel. It also shows 
very good agreement with the measured OES-PDA data, 
and it becomes evident from both the simulation and the 
measured values that the number of nonmetallic inclu-
sions continuously decreases throughout the process.

Summary and Conclusions 
The present work deals with a hybrid approach using 
comprehensive simulation to predict the composition of 
steel, slag and nonmetallic inclusions in various second-
ary metallurgical process stages. For the simulation of 
SecMet processes, a new software named “i-clean” was 
developed in Python. It is based on the well-known cou-
pled thermodynamic and kinetic EERZ models7 using 
the FactSage database via the ChemApp Python inter-
face. In the first part, the developed software architecture, 
all implemented boundary conditions, and the features 
of the solver are discussed in detail. The work’s second 
part dealt with a data-driven approach to describe the 
alloy yields, and the influence of heating using carbon 
electrodes regarding the carbon input. The data evalu-
ation was based on a comprehensive data set consisting 
of process and steel analysis data from an entire year’s 
production, which was provided for this work by voestal-
pine Stahl GmbH. Finally, the findings of the statistical 
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evaluation were used for the simulation of an exemplary 
case. This involved an attempt to simulate the develop-
ment of the most important alloying and by-elements and 
nonmetallic inclusions, as well as the slag composition, for 
a melt produced at voestalpine Stahl GmbH. It was found 
that excellent results could be achieved for the steel com-
position compared to the samples taken. The simulation 
results of the slag composition showed a slightly higher 
deviation from the actual measured values, whereby the 
sampling of a possibly not completely homogenized slag 
must be considered as an error source. The development 
of the investigated aluminum inclusions showed a similar 
course to the actual measured values. The presented work 
demonstrates how novel data-driven approaches coupled 
with large amounts of data can be used to optimize 
existing thermodynamic and kinetic modeling further 
to simulate the SecMet process successfully. Other pos-
sibilities that will be investigated in future research based 
on the data-driven approach are the description of the 
process influences on the separation rate and formation 
of nonmetallic inclusions or the process dependency of 
the temperature, representing a critical boundary condi-
tion for thermodynamic calculation. Moreover, further 

modeling measures must be implemented to optimize the 
EERZs between steel or slag and refractory.
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