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Abstract: Artificial neural network (ANN) is widely applied as a predictive tool to solve complex
problems. The performance of an ANN model is significantly affected by the applied architectural
parameters such as the node number in a hidden layer, which is largely determined by the complexity
of cases, the quality of the dataset, and the sufficiency of variables. In the present study, the impact
of variation/response space complexity and variable completeness on backpropagation (BP) ANN
model establishment was investigated, with a steel ladle lining from secondary steel metallurgy as
the case study. The variation dataset for analysis comprised 160 lining configurations of ten variables.
Thermal and thermomechanical responses were obtained via finite element (FE) modeling with elastic
material behavior. Guidelines were proposed to define node numbers in the hidden layer for each
response as a function of the node number in the input layer weighted with the percent value of
the significant variables contributing above 90% to the response, as well as the node number in the
output layer. The minimum numbers of input variables required to achieve acceptable prediction
performance were three, five, and six for the maximum compressive stress, the end temperature, and
the maximum tensile stress.

Keywords: backpropagation artificial neural network; space complexity; variable completeness;
lining concept; steel ladle; thermomechanical responses

1. Introduction

Artificial neural network (ANN), a technique for artificial intelligence and machine learning, is
often applied as a tool to deal with nonlinear problems and offer predictions in civil engineering [1–4],
material science [5,6], etc. The extension of its applications into the iron and steel industry is also
reported [7–11].

Architecture establishment of a suitable ANN model is still challenging in the definition of
the layer number and node number in the respective layer. Generally, a three-layer ANN model is
sufficient to build the relations among variables and responses [12]. Therefore, the determination of
the proper node number in the single hidden layer is the key issue. Table 1 lists the publications on the
optimization of the single hidden layer node number. To seek an optimal one, many applied the trial
and error method in a diverse range of the node numbers [13–17]; whilst others merely followed the
rules of thumb proposed in the literature [18–24], and the application of rules can significantly reduce
the number of trials. Six selected rules of thumb [18–25] used in the respective publication are given
below and indicated in Table 1 with an asterisk. The node number or number range for each study
was calculated according to the six rules of thumb and compared to the optimal hidden layer node
number determined in the respective study. It is evidently shown that the extended applications of six
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empirical equations into other fields are far less satisfying. Equations (1) and (2) show more robust
applications, yet they yield a rather larger number for trials.

Nh = (Ni + No)1/2 + a, a ε [1, 10] (1)

Nh = (Ni + No)1/2 + a, a ε [0, 10] (2)

Nh = (Ni × No)1/2 (3)

Nh = Ntrain/(Ni + 1) (4)

Nh = 1/2 (Ni + No) + N1/2
train (5)

Nh = 2/3 (Ni) + No (6)

where, Ni, Nh, and No are the node numbers in the input, hidden, and output layer, Ntrain is the dataset
size for training, and a is an empirical integer not larger than 10.

Several reasons contribute to the diverse results of the hidden layer node number optimization
with the six rules of thumb. One is the problem nature or complexity. As shown in Table 1, the optimal
values of erosion of beaches and energy conservations in old buildings are out of the range defined by
the empirical equations. One empirical equation may show consistent performance for the problems
within similar complexity. For instance, the prediction of Equation (3) for beach erosion [13] is rather
close to the optimal value that was used as the rule of thumb in the study of the mechanical behavior of
mortar [22]. The second reason is the quality of the dataset for training. The optimal training dataset
size was suggested to be ten times larger than the total number of weights and biases [12]. A steel ladle
lining study showed that the dataset size could be 16 times larger than the variable number in the input
layer, in the case of a well-distributed dataset in variation/response spaces [26]. Table 1 also shows
the size of the dataset for training and the ratio of the training dataset size to the number of variables
quoted in literature. Mostly, the information of dataset quality is missing and insufficient dataset size
relative to the variable number could be expected. Finally, the sufficiency of important variables or
factors, i.e., the variable completeness, in the problem definition shall also be taken into account.

The present paper investigates the influence of variation/response space complexity and variable
completeness on the required node numbers for a three-layer backpropagation (BP)-ANN model
using steel ladle lining as a case study. A representative dataset was obtained by a sample screening
approach applying multiple orthogonal arrays [26]. The dataset contains 160 samples constituted by
ten variables and three responses. The first part of the paper examines the prediction performance of
three-layer BP-ANN models with various node numbers in the hidden layer, to reveal the correlation
among the node numbers of input and output layers, the ratio of the number of variables contributing
above 90% to the response to the total number of variables, and the node number of the hidden layer
for each response. In the second part, several combinations of variables were tested as inputs for given
three-layer BP-ANN models to assess the influence of the ratio of input variables to the total number of
variables on the prediction performance.
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Table 1. Literature study of rules to define the node number in the hidden layer.

Research Field Ntrain Ni Ntrain/Ni No
Nh

Range
Number
of Trials

Optimal
Nh

Equation
(1)

Equation
(2)

Equation
(3)

Equation
(4)

Equation
(5)

Equation
(6)

Erosion of beaches [13] 105 3 35 15 1–20 20 3 [5, 15] [4, 15] 4, 5 26, 27 19, 20 17

Energy conservation in old buildings [14] 66 7 9.4 1 4–15 12 15 [3, 13] [2, 13] 2, 3 8, 9 12, 13 5, 6

Power output [15] – 5 – 1 1–11 11 7 [3, 13] ∆ [2, 13] ∆ 2, 3 – – 4, 5

Phytoremediation of palm oil secondary
effluent [16] 30 3 10 2 1–15 15 13 [3, 13] ∆ [2, 13] ∆ 2, 3 7, 8 7, 8 4

Adsorption of metal ions [17] 13 3 4.3 3 1–15 15 14 [4, 14] ∆ [3, 14] ∆ 2, 3 3, 4 6, 7 5

Extraction of sensing information [18] 500 100 5 1 11–20 10 19 [11, 20] * [10, 20] ∆ 10, 11 4, 5 72, 73 67, 68

Lithology identification for shale oil
reservoir [19] 220 11 20 4 7–11 5 10 [4, 14] * [3, 14] ∆ 3, 4 18, 19 22, 23 11, 12

Moisture content prediction in paddy
drying process [20] – 3 – 1 2–12 11 2 [3, 12] [2, 12] * 2 ∆ – – 3

Corn variety identification [21] – 10 – 3 3–14 12 8 [4, 14] ∆ [3, 14] * 3, 4 – – 9, 10

Mechanical behavior of mortar [22] 30 6 5 1 1–9 9 2 [3, 13] [2, 13] ∆ 2, 3 * 4, 5 8, 9 5

Extraction of phenolic compounds [23] 12 3 4 1 1–3 3 2 [3, 12] [2, 12] ∆ 2 ∆ 3 * 5, 6 3

Damage pattern of structural systems [24] 113 10 11.3 4 17, 18 2 17 [4, 14] [3, 14] 3, 4 10, 11 17, 18 * 10, 11

Ntrain is the dataset size for training.

Ni, Nh, No are the nodes numbers in the input, hidden, and output layer, respectively.

– Data are not available in the literature.

* The rule was used to define nodes number in the hidden layer by the authors in their publication.
∆ Rules that optimal Nh are coincident with.
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2. Methodology

2.1. Numerical Experiments

2.1.1. Lining Concept Design

Ten main variables prescribing steel ladle linings were selected for numerical experiments
design. These variables (Table 2) were the thicknesses of refractory linings and the steel shell,
thermal conductivity and Young’s modulus of lining materials. The dataset of lining configurations
was designed by a sample screening approach developed in the previous work [26], applying five
mixed-level orthogonal arrays L32 (49

× 21) with nine four-level variables, and a two-level variable for the
thickness of the steel shell. This gives a total amount of 160 experiments (See Supplementary Material).

Table 2. Geometrical and material property variables of steel ladle [26].

Variables Range of Variable Values Label of Variables

Thickness (m)

Working lining 0.03–0.27 A
Permanent lining 0.05–0.14 B

Insulation 0.003–0.042 C
Steel shell 0.015–0.035 J

Thermal conductivity
(Wm−1K−1)

Working lining 1.5–10.5 D
Permanent lining 1.0–10.0 E

Insulation 0.05–1.55 F

Young’s modulus (GPa)
Working lining 25–115 G

Permanent lining 5–110 H
Insulation 0.1–39.1 I

2.1.2. Finite Element Models

Finite element (FE) modeling was carried out with a commercial software ABAQUS to obtain
the thermal and thermomechanical responses of the steel ladle considering elastic material behavior.
The simplified two-dimensional numerical model representing a horizontal cut through the slag-line
position in the upper part of the steel ladle is depicted in Figure 1. The model was composed of five
layers, namely, a two-half brick working and permanent lining, an insulation lining, a fiberboard, and
a steel shell. There was 0.4 mm circumferential expansion allowance between bricks. The modeling
considered the first process cycle of the steel ladle, which included preheating the hot face of the
working lining to 1100 ◦C over 20 h, tapping the steel melt of 1600 ◦C into the ladle, transport and
refining for 95 min, and a 50 min idle period. The radial displacement of linings was free and the
circumferential one was constrained by a symmetry condition. The temperature-dependent surface
film condition function in ABAQUS was applied to define the heat transfer between both the melt and
the hot face of the working lining and the steel shell and the ambient atmosphere. A heat flux crossed
the interfaces between linings, and radiation and convection were allowed by applying a heat transfer
coefficient. From 160 numerical experiments, the end temperature and the maximum tensile stress
at the cold end of the steel shell and the maximum compressive stress at the hot face of the working
lining were obtained from FE modeling.
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2.2. BP-ANN Modeling

2.2.1. BP-ANN Architecture

A three-layer BP-ANN model, which includes one input, one hidden, and one output layer, is one
of the most popular ANN models. The input variables are introduced to the input layer by a vector
(X). A summation for each node in the hidden layer is conducted by multiplying input values with
their respective weights (W) plus a bias (b) constant. The summation is processed by an activation
function and transferred to the hidden layer. The same procedure is carried out between the hidden
and output layers. The predicted values at the output layer are compared with the target values and
errors are calculated. Weights and biases among layers are updated iteratively until a user-defined
performance goal is achieved. The schematic of a three-layer ANN model is demonstrated in Figure 2.
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In the present study, two groups of three-layer BP-ANN models were employed to investigate the
optimal range of the node numbers in the hidden layer for individual response and the influence of the
ratio of input variables to the ten variables (indicating the variable completeness) on the prediction
performance. In the first group, there were ten nodes in the input layer, one node in the output layer,
and the node number in the hidden layer varied from 1 to 20. The preferable node number range in the
hidden layer for each response was proposed afterward. In the second group, different combinations
of significant input variables for the individual response were selected according to the ANOVA results
of the previous work [27] and listed in Table 3 with their contribution summations to the response. For
each combination, several BP-ANN models were employed with the node number of the hidden layer
in the range proposed from the first group tests. For both groups, the activation function between
the input and hidden layers was a hyperbolic tangent sigmoid function [28], and a linear function
was applied between the hidden and output layers. The training algorithm was the gradient descent
with momentum and adaptive learning rate [28]. Training was terminated by reaching any defined
criterion, for instance, a maximum number of epochs (10,000), the minimum performance gradient
(10−5), or a minimum target error (0).

Before starting the network modeling, input variables were normalized to a scale of 0.1–0.9 to
mitigate the influence of magnitudes. The normalization of a variable (Xi) can be carried out according
to Equation (7).

Xi =
0.1xmax − 0.9xmin + 0.8xi

xmax − xmin
(7)

where xmax and xmin are the maximum and minimum values of the variable x.
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Table 3. Variable combinations of each response for backpropagation (BP)-ANN models.

Response Number of Input Variables Variable Labels Contribution to Response (%)

Compressive stress

1 G 93
2 G, J 96
3 G, J, D 98

10 A–J 100

End temperature

3 A, D, F 71
4 A, D, F, C 89
5 A, D, F, C, E 94

10 A–J 100

Tensile stress

4 F, G, D, J 71
5 F, G, D, J, C 78
6 F, G, D, J, C, H 85
7 F, G, D, J, C, H, I 91

10 A–J 100

2.2.2. Performance Assessment of BP-ANN Models

The responses were predicted by the leave-one-out (LOO) cross-validation method, i.e., one
simulation result was left for testing and the remaining results were used for training. Three quantities
were used to quantitatively assess the performance of the BP-ANN models. They were the maximum
relative error of all testing results (RE_MAX), mean relative error (MRE), and coefficient of determination
(B) calculated by the following equations:

RE_MAX = Max


∣∣∣di − yi

∣∣∣
di

 (8)

MRE =
1
n

n∑
i=1

∣∣∣di − yi
∣∣∣

di
(9)

B = 1−

∑n
i=1(di − yi)

2∑n
i=1

(
di − d

)2 (10)

where n is the total number of testing experiments, di is the FE-simulated value of the ith testing
experiment, d is the mean FE-simulated value of all the testing experiments, yi is the BP-ANN predicted
value of the ith testing experiment with the LOO method.

3. Results and Discussion

3.1. Influence of Variation/Response Space Complexity on BP-ANN Model Establishment

The relation between the complexity of variation/response space and the node number in the
hidden layer for each response was revealed. Except the 32 experiments acting as boundaries, the
remaining 128 experiments were tested by leave-one-out cross-validation. The node number in the
hidden layer was varied from 1 to 20 for each response. The assessment of the prediction performance
is shown in Figure 3. Lower RE_MAX and MRE and larger B are preferable.
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(b) MRE—mean relative error, and (c) B—coefficient of determination of the BP-ANN models with
different node numbers in the hidden layer.

Figure 3 shows that the performance is significantly improved by increasing the node number
in the hidden layer to seven. However, the performance is oscillatory with further increasing node
number; the larger number of nodes may lead to over-fitting and affect the generalization capability.
For instance, when the node number is 20, the mean relative errors increase for all three responses; the
coefficients of determination decrease; the maximum relative error for end temperature is quite high.
Furthermore, it shows that each response has different optimal ranges.
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Considering the particular behavior of each response, error criteria were specifically defined for
each response and a preferable range of the node number in the hidden layer was proposed for each
response (Table 4). The range was 4–6 for the maximum compressive stress at the hot face of the
working lining, 5–7 for the end temperature of the steel shell, and 10–12 for the maximum tensile stress
at the cold end of the steel shell. These ranges can be correlated with the node numbers in the input
and output layers, as shown in Table 5. The number of variables that contribute more than 90% to
the response was used to calculate the PF value, which represents the variation/response complexity.
This number was divided by ten (the total number of variables) and multiplied by 100, which gave a
PF value in percent. Table 5 shows that the PF equaled 10, 50, and 70 for the maximum compressive
stress, end temperature, and maximum tensile stress, respectively. Therefore, the relation between the
complexity of the variation/response space and the node number in the hidden layer can be associated
with the PF and the node numbers in the input and output layers explicitly. Two equations were
deduced from Table 5.

Lower boundary: Nh = ANi + No (11)

Upper boundary: Nh = (A + 0.2) Ni + No (12)

where A is a function of the PF, Ni, Nh, and No are the node numbers in the input, hidden, and output
layers, respectively.

Table 4. Optimal node number range in the hidden layer for each response according to predefined
error criteria.

Response RE_MAX (%) MRE (%) Nh Range

Compressive stress 5 1.5 [4, 6]
End temperature 11 2 [5, 7]

Tensile stress 15 2.5 [10, 12]

Table 5. Correlation between PF and node numbers in the input and output layers.

Response PF
Nh

Lower Boundary Upper Boundary

Maximum compressive stress 10 3
10 Ni + No

5
10 Ni + No

End temperature 50 4
10 Ni + No

6
10 Ni + No

Maximum tensile stress 70 9
10 Ni + No

11
10 Ni + No

The relation between A and PF was fitted by an exponential equation (Equation (13)) as shown in
Figure 4. Equations (11)–(13) provide guidelines to define node number in the hidden layer for a steel
ladle system based on PF and node numbers in the input and output layers.

A = f (PF) = 0.2982− 0.001242 (1− e0.08836 ∗ PF) (13)

The above established guidelines were applied to validate the optimal node numbers in several
publications [15,19,20,22–24], which fall under the topics of temperature, mechanical behavior, and
material development. The calculations of the node number range of the hidden layer for these
publications were performed with PF values of 10 and 70, respectively. A wide range was created by
the lower boundary value with PF values of 10 and the upper boundary value with PF values of 70.
The optimal node numbers in the hidden layer obtained from literature and the calculated ranges from
proposed guidelines are given in Table 6. It shows that the optimal values in five publications are in the
range defined by Equations (11)–(13), except that the optimal node number in literature [24] is slightly
different to the calculated range. Four [19,20,22,23] of them are in the range with an assumption PF
equal to 10 and one [15] in the range with PF equal to 70. The possible total numbers of trials are also
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given in Table 4, and fewer trials are needed, compared with the trial and error method [15] and some
empirical equations [20,22].
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Table 6. Comparison of optimal node numbers in literature and the predicted ranges from the
proposed guidelines.

Literature Information Proposed Guidelines

Research Topics Optimal
Nh

Nh Range
(PF = 10)

Nh Range
(PF = 70)

Nh Range
(PF = 10–70)

Total Number
of Trials

Power output [15] 7 [2, 4] [5, 7] * [2, 7] 6
Lithology identification for shale oil

reservoir [19] 10 [7, 10] * [13, 17] [7, 17] 11

Moisture content prediction in paddy
drying process [20] 2 [1, 3] * [3, 5] [1, 5] 5

Mechanical behavior of mortar [22] 2 [2, 4] * [6, 8] [2, 8] 7
Extraction of phenolic compounds [23] 2 [1, 3] * [3, 5] [1, 5] 5

Damage pattern of structural systems [24] 17 [7, 9] [13, 15] [7, 15] 9

* The range includes the optimal node number in the literature.

3.2. Influence of the Variable Completeness on the BP-ANN Prediction Performance

The combinations of input variables for each response are listed in Table 3. Each combination was
fed as input to BP-ANN models with the node numbers in the hidden layer proposed in Table 4. For
instance, the optimal node number in the hidden layer was 4, 5, and 6 for the maximum compressive
stress. That is to say, three BP-ANN modeling were conducted for each input combination. The
prediction performance was evaluated by the mean values of RE_MAX, MRE, and B of three BP-ANN
models, shown in Figure 5. In general, for all three responses, lower RE_MAX and MRE and larger B
can be achieved with increasing variable completeness. The minimum number of variables for each
response was determined by an arbitrary chosen error tolerance, i.e., 15% of RE_MAX, 3% of MRE, and
0.90 of B and listed in Table 7 with contribution summations of these variables to the response. The
combinations consisted of the minimum number of variables that are capable of predicting the relation
between input variables and corresponding outputs. It also indicates that the minimum number of
variables changes with respect to the complexity of the problem. A larger number of variables shall be
considered if the problem shows significant complexity, which shall contribute a certain value to the
response. For instance, this value could be 90% for the tensile stress. This information further confirms
the top priority of the significant factors of lining concepts analyzed with the Taguchi method.
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Table 7. Selection of the minimum number of input variables satisfying the predefined criteria.

Response Minimum Number of Input Variables Contribution to Response (%)

Compressive stress 3 98
End temperature 5 94

Tensile stress 6 85
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4. Conclusions

The influence of variation/response space complexity and variable completeness on BP-ANN
model establishment was investigated. The guidelines to define node numbers in the hidden layer
were proposed for a steel ladle lining system according to the variation/response space complexity.
The preferable node number ranges for maximum compressive stress at the hot face of the working
lining, the end temperature, and the maximum tensile stress at the cold end of the steel shell were 4–6,
5–7, and 10–12, respectively. The minimum numbers of input variables of significance determined by
the Taguchi method for the BP-ANN model were three, five, and six for the maximum compressive
stress, the end temperature, and the maximum tensile stress.

The results evidently and exemplarily show that the variation/response complexity plays a
determinant role in the architecture establishment of a BP-ANN model, which is often neglected in the
applications of ANN models. The comparison study also demonstrates that the proposed guidelines
in the present paper are efficient and can be extended into other fields in defining an optimal node
number of the hidden layer in a three-layer BP-ANN model.
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