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Abstract

Due to variety of scale dynamics evolved in gas–solid flows, most of its numerical

description is limited to expensive short durations. This has made the slow processes

therein, such as the chemical species conversion, to be out of an appropriate reach.

In this work, an application of the transport-based recurrence computational fluid

dynamics (CFD) has been introduced for the fast modeling of passive scalar transport,

which is considered as species conversion and heat transfer in fluidized beds. The

methodology discloses the recurrent dynamics during a short-term full CFD simula-

tion as Lagrangian shift operations upon which a passive scalar can infinitely be

traced. Apart from convecting, a proper approach based on the turbulent kinetic

energy of tracked dynamics is introduced for modeling the physical diffusion of the

scalar transported. Our outcomes have revealed a subtle chasing to the full CFD spe-

cies simulation with a speed-up up to 1,600.

K E YWORD S

fluidized bed, passive transport, recurrence CFD, two-fluid model (TFM)

1 | INTRODUCTION

“The arrival time of a space probe traveling to Saturn can be predicted

more accurately than the behavior of a fluidized bed chemical reac-

tor!”.1 Fluidized beds are systems with a bed of granular particles ini-

tially resting on a perforated bottom plate. When the inlet fluid is

passed upward through the bottom plate, it suspends, or fluidizes, the

particles to allow a liquid-like behavior of solids with a high effective

contacting process. This contributes to the chief advantage of fluid-

ized beds in providing a rigorous mixing and favorable heat and mass

transfer characteristics. With these attributes, fluidized beds have

occupied a high-ranking beneficial position in the chemical processing

applications, such as the well-known fluidized catalytic cracking of

petroleum oil, granulation for powder production, coal carbonization

and gasification, coking, coating preparations, and also in nuclear fuel

fabrication. However, fluidized beds reactors are challenging to design

and scale-up. The dynamics involved composes into complex physical

phenomena because of the multiscale nonlinear interactions between

the solid and fluid phases. Therewith, the evolution of structures, on

the other hand, is strongly dependent on the particle properties such

as size, shape, and density.2 This nature has engrossed Geldart1 and

many other scientists3-5 in order to understand and predict accurately

all involved dynamics of fluidized beds. Principally, the fluid flow inter-

acts with the solid particles by the interstitial fluid drag. The particles

among themselves induce kinetic, collisional, and frictional stresses

and undergo to complicated deformations and influences of pressure

gradient, rolling, and gravity forces. The heat is transferred within

each single phase and also between them. These (spatial and tempo-

ral) small-scale (microscopic) interactions compose to larger

(mesoscopic and macroscopic) interactions which take place between

clusters of solid (emulsion) and fluid bubbles. The temporal evolution

of the (microscopic) particle's collision dynamics lasts about few milli-

seconds, much shorter than the bubble evolution. While the bubbles

in turn, move faster than the fluid slugs in the bed and phenomena as
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heat transfer and chemical species conversions can take minutes or

hours.

Nowadays, computational methods based on fundamental princi-

ples for resolving each particle–particle and fluid–particle interactions

have allowed to explore many details of the underlying dynamics6 in

fluidized beds. Using the computational fluid dynamics (CFD) tech-

niques or lattice Boltzmann methods, the fluid hydrodynamics (obey-

ing Navier–Stokes equations) is investigated on finer grids than the

particles separations disclosing all forces exerted on the particles sur-

face (drag), and deducing improved empirical correlations.7,8 The solid

side contacting forces of collisions are pictured as either an event-

driven hard sphere model or a time step-driven soft sphere approach.

With all relevant active forces on individual grain, each particle's tra-

jectory is computed with the aid of Newton's second law, which is

referred as the discrete element method (DEM) introduced by Cundall

and Strack.9 Coupling CFD-DEM has been the most appropriate

numerical modeling for the simulation of fluidized beds; however, the

huge inherent computational effort makes its application impractical

for large particulate systems.10 It is, therefore, common to investigate

fluidized beds in large processing units using averaged equations of

motion.11 Namely, by averaging Navier–Stokes equations over several

particle diameters while the particles may still be treated as discrete

elements (unresolved CFD-DEM),12 the computational cost can be

reduced, but now the solid–fluid interactions are modeled using

empirical closures. Another alternative method is considering the solid

particles as a separate continuum, like the fluid phase, and the motion

of particles is analogously averaged out, in the so referred two-fluid

model (TFM).13,14 Therein, the solid stresses arising from particle–

particle collisions, the transitional dispersion of grains, and rotational

speeds are deduced by adopting the kinetic theory of granular flow.15

Since TFM allows for coarser grids without demanding to track indi-

vidual particles, it ends to be more suitable for large systems than

CFD-DEM; however, it is still forbidding for huge industrial-scale

reactors.

With the considerable developments of numerical methods, the

coarse-graining models have appeared to upscale both CFD-DEM and

TFM to macroscopic sizes. For instance, the parcel-based DEM

methods handle in tracking a parcel of several solid constituents

which interact with modified material parameters.16-18 Likewise, the

coarse-grained TFM leads to simulate larger systems on much coarser

grids,19 but with the requirement of fundamental considering to the

subgrid heterogeneities.19-29 Even though, using these methods, the

plant-size reactors may be simulated, but they are bounded by short-

term investigations due to the huge computational power needed.

The time scale simulation remains of small rates in order to capture

mathematically all relevant dynamics of collisions; and therefore, the

slow processes, which take hours in large fluidized beds, are still inac-

cessible. Seeking a remedy, some of us have introduced the idea of

recurrence CFD (rCFD) for pseudoperiodic flows.30-33 Namely, the

continuous reappearing (recurrent) structures of such dynamics, for

instance, the gas bubbles evolution in bubbling fluidized beds, is con-

sidered and analyzed on the base of a short-term full CFD simulation,

that is, CFD-DEM or TFM. Using these data fields, the recurrence

plots34 are generated to predict a recurrence path upon which a pas-

sive scalar can be transported till infinity. This new methodology has

been successfully applied for the fast passive transportation in

multiphase flows30 and heat transfer prediction in fluidized beds,31,32

basing on CFD-DEM simulations. Therein, the advancing time-

extrapolation procedure, by which the passive scalar is propagated on

candidate recurrent patterns, is established using three proposed

models. The flow-based category30 where the recurrent flux fields

have to be provided in order to resolve either a convection-diffusion

equation (Eulerian model) or a stochastic differential equation for a

fluid-parcel trajectory (Lagrangian model). In the third model named as

the transport-based rCFD model,32,33 the recurrent fields are shorten

to only start-end positions information with no a posteriori need to

resolve any equation. In this work, we focus on the test and applica-

tion of the third rCFD model for the fast passive prediction of species

and temperature (considered as a passive scalar) reconstructed trans-

port in a lab-scale bubbling fluidized bed. The TFM is used to perform

a short-term full CFD simulation, during which all database is collected

and analyzed in terms of the recurrence properties and rCFD process.

The main content, herein, implicates enhancements of the transport-

based rCFD methodology in relevance to evaluating the proper physi-

cal diffusion approach for the passive scalar transported. Namely,

after tracing the scalar, different diffusion approaches have been

applied on the base of an approximate local diffusion and the global

balance of the mass concentration scalar and enthalpy in the domain.

The methodology is adapted for the reconstruction procedure of spe-

cies and temperature path, separately, and the advancing time-

extrapolation process for the case of a continuous coming-in inlet

species on the gas phase. Doing so, the results have shown a success-

ful consistency with the full CFD evolution by consuming very cheap

and short runtime computations.

The rest of the paper is arranged as follows. First, the TFM and

rCFD methodologies, particularly the transport-based method, are

explained in Section 2 and Appendix. Then, details of the simulated

fluidized bed with the results of species and heat transport rCFD

modeling are presented and discussed in Section 3. Therein, the main

feature is about finding the proper approach of the physical diffusion

part in the transport-based rCFD methodology. On the other hand,

the adapted algorithm of rCFD to transport the solid and gas tempera-

tures as interacted two scalars is also outlined. Finally, relevant results

are summarized and conclusions are given in Section 4.

2 | THEORY

2.1 | Two-fluid model

In the framework of gas–solid fluidization, the dynamics is handled on

(large-scale) local mean variable within the (continuum) TFM

approach. Its transport equations given in the Appendix describe the

Eulerian framework of mass, ρs/gϵs/g and momentum, ρs/gϵs/gus/g bal-

ances, precisely, derived on each phase (Equation A1 in Appendix).

Therein, ϵ denote the volume fraction, while ρ and u = (u, v, w), are the
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density and velocity fields, respectively, in correspondence to the

subscript gas (g) or solid (s) phase. In some cases of a cold fluidi-

zation is accompanied with nonreactive chemical species conver-

sions, the involved transport dynamics, for each jth specie mass

fraction γj, is described in Eulerian framework, likewise

(Equation A14 in the Appendix). The species, therein, are princi-

pally diffused obeying the dilute approximation of Fick's law, and

roughly consider an identical constant value of the diffusion coef-

ficient Dj, on the solid and gas phases. For another particular flu-

idization, when a participating heat transfer is implied, the

temperature on the gas Tg and solid Ts phases follows, as well, an

Eulerian frame which describes the enthalpy transport

hs=g = c
s=g
p Ts=g (Equation A15 in the Appendix), assuming constant spe-

cific heats cs=gp . The key element, therein, is about measuring the inter-

phase heat transfer coefficient denoting the Nusselt number, Nu,

where the solid thermal conductivity κs is rigorously considered fixed

and equivalent to the gas phase one κg.

2.2 | Recurrence CFD

In previous work,30 the idea of rCFD had been introduced as an

approach that helps to model the long-term processes in massively

large systems, such as the chemical species conversions. Its applica-

tion implies disclosing the recurrence properties of the system, which

access the similarity between states and determine its periodicity

parameters. Namely, on the base of a short-term full CFD simulation,

the evolution in time t of active patterns at different probes in the

domain is considered to decide the recurrence period τrec, which has

to exceed several pseudoperiodic periods τp − p of the system. This

last is identified by performing a spectral analysis of the signals (see

an example in Figure 4d for the probes taken of the studied fluidized

bed). And, hence, the recurrence period should span multiple periods

of the corresponding lowest-lying peak frequency (fcrit) of the energy

spectra, that is,

τrec � τp−p =
1
fcrit

: ð1Þ

The recurrence time step Δtrec is estimated from the consider-

ation that a given field φ is not changing too strongly from one time

step to the next, inside τrec. Meaning that,

Δtrec �
ffiffiffiffiffiffiffiffiffiffi
φ2h i
_φ2

� �
s

, where _φ tð Þ= jφ t+Δtð Þ−φ tð Þ j
Δt

, ð2Þ

and h�i denotes the temporal averaging operator. In order to quantify

the similarity of flow patterns between states, for example, t and

t
0
= t + Δtrec, the recurrence norm is defined as,30

R φð Þ t,t0ð Þ= 1−
Ð
d3r φ tð Þ−φ t0ð Þð Þ2

maxt,t0
Ð
d3r φ tð Þ−φ t0ð Þð Þ2

, ð3Þ

where φ can be chosen depending on the phenomenon of interest.

And, by considering a series of stored fields the recurrence matrix can

be obtained as

Rn,m �R nΔtrec,mΔtrecð Þ ð4Þ

(see examples in Figures 5a,b, showing the recurrence matrix

computed in respect of the solid volume fraction R ϵsð Þ and solid flux

R ϵsusð Þ, respectively, for the studied fluidized bed).

Basing on the recurrence matrix, a recurrence path can be

extracted to convey the system's evolution far beyond the recording

time τrec. The strategy adopted was previously explained in,30,31 and

here we recall it in a simplified flow frames, f, aspect, shown in

Figure 1. Namely, basing on R(500, 500), and starting from the end

f500, we look for the most similar state by jumping backward toward

the first half of τrec, and considering the original flow of the maximum

R frame, that is, f130 ≈ f500. This frame will be taken as a base start

field for the propagation of the passive scalar. Next, we pick an inter-

val of random length Δτ > Δtrec below the recurrence matrix size and

construct the subsequent runtime of the frames, for example, f130,

f131, f132,…, f200. At the end of the interval, we jump again toward a

similar state (maximized R) that better fits the end, that is, f200 ≈ f365.

Depending on which half the end is, we pick the following state in the

other such that R is maximized, and consider again another random

interval. The process can continue till infinity and leads eventually to a

discrete time series, that is, {f500 ≈ f130, f131, f132,…, f200 ≈ f365, f366,…,

f400 ≈ f75, f76,…} that convects a passive process with a temporal

lag Δtrec.

In the so-called transport based rCFD model,32,33 the online

recurrent flow patterns evolving during τrec (for each Δtrec), and which

are needed to generate the flow candidature of the passive process,

are considered in a Lagrangian sense. Namely, we describe the meth-

odology as a tracer-based method that depends on tracking the

dynamics, of the gas or solid phase or both, following inertia-less par-

ticles/tracers trajectories produced each Δtrec. If these Lagrangian

tracers are projected on the computational grid cells, the model ends

to recurrent shift information stored in memory. Hence, in order to

trace the propagation of the passive scalar, afterward, the model has

only to shift the scalar information from the corresponding start to

the receiving end cells, following the recurrent sequence control. In a

practical inspection the methodology conducts the injection of inter-

nal massless tracers inside the domain with a seeding volume,

Vtr ≤ Vcell, the volume of one cell, at the beginning of each Δtrec. For

the sake of an appropriate parameterization of the coming-in and

going-out flow fluxes, another specific inlet and outlet tracers are

accounted by different particular volumes. Namely, the inlet flux is

approximated by setting a number of inlet tracers at the inlet surfaces

of the domain, Ain, with discretization volumes equal to

Vinlet
tr = ϵs=gkuinkAinΔtrec (see the corresponding subset of Step (1) in

Figure 2). As graphically interpreted, this volume, V inlet
tr , can be smaller

or bigger than the neighboring-cell volume Vbc. In case of

Vinlet
tr = ϵs=gkuinkAinΔtrec <Vbc , the inlet tracers will move during Δtrec

and end to those (neighboring-) cells, with a normal physical behavior.
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However, when Vinlet
tr = ϵs=gkuinkAinΔtrec >Vbc , which occurs at signifi-

cant inlet velocities or long Δtrec, a big portion of the inlet tracers will

travel deep inside the domain and they will all end to one cell produc-

ing unphysical high accumulation hit of transported concentration. In

this regard, a temporal delaying approach on these tracers, by random

periods between [0: Δtrec], is required in order to distribute them

homogeneously along its path next to the inlet. Regarding the outlet

flux, we respect to those internal tracers that hit the outlet surfaces,

Aout, and leave the domain in each Δtrec, as outlet tracers. If we count

these tracers each time step Δt, as Noutlet
tr , hence their volumes can be

set to Voutlet
tr = ϵs=gkuoutkAoutΔt=Noutlet

tr (see the corresponding subset

of Step (4) in Figure 2). Finally, at the end of τrec, the stored database

ends up to grouped information positions of start–end internal

tracers, end inlet tracers, and start outlet tracers, for each Δtrec.

At this stage, the short-term full CFD simulation is stopped and

the offline passive transportation can be triggered on the base of the

stored data set and the recurrent sequence control. It achieves a time-

extrapolating prediction of a passive scalar concentration traced on

recurrent moments, and enduring till eternity. The offline transporta-

tion steps are graphically pictured in Figure 2, where, in this context,

we shortly outline them as following:

1. Transport the inlet concentration γinletc , pursuing the stored shift

positions of the inlet tracers. In case of facing multiple trans-

portations in the same end grid cell a weighted average is applied as

γ =

Phits
i=1

viinletγ
inlet
c

Phits
i=1

viinlet

, with i=1,2,…,hits, ð5Þ

where viinlet is the volume of inlet tracer.

2. Transport the concentration γ following the shift positions of inter-

nal tracers. Likewise, for cells of more than one shift operation

and, for instance, the cell is hit by an inlet tracer, γ is given as

γ =

vinletγinletc +
Phits
i=1

ϵis=gv
i
trγci

� �

vinlet +
Phits
i=1

ϵis=gv
i
tr

� � , with i=1,2,…,hits, ð6Þ

where vitr is the volume of internal tracer and γci is the concentration

transported from the cell ci, with the volume fraction ϵis=g (following

the phase on which the propagation of passive scalar is traced).

3. Fill the holes. Meaning that, those resultant cells which are not hit

by any transport information, its value will be interpolated by the

surrounding cells concentration.

4. Consider the concentration of the start-cell outlet tracers as γoutletc .

Meaning that, the concentration in the cells where the outlet

tracers were located at the beginning of Δtrec, and before leaving

the domain.

5. One step correcting diffusion controlled by the physical global bal-

ance between the coming-in, accumulated, and going-out mass

concentration in the total domain,32 that is,

Dmγ

dt
=
dmγ

dt
+r� us=gγ

� �
=0

ð ð
)mt+Δtrec

γ = _mγin − _mγout

� �
Δtrec +mt

γ , ð7Þ

and which can be written as

Xcells
i=1

ϵis=gγci Vcell

	 
t+Δtrec
=
Xinlet
i=1

viinletγ
inlet
ci

−
Xoutlet
i=1

vioutletγ
outlet
ci

+
Xcells
i=1

ϵis=gγci Vcell

	 
t
:

ð8Þ

If the left-hand side (LHS) in Equation (8) exceeds the target

(right-hand side RHS), the diffusion operator loops over all the internal

faces and shifts/swaps rigorously (out) a specific concentration por-

tion from the high-concentration cell, as

Δγ = f
γci −γci+1

2
: ð9Þ

Here, ci and ci + 1 are the two adjacent cells which share the sur-

face, and f is a constant diffusion factor of magnitudes 1/2n. In the

contrary case, when the system indicates an excessive target the shift

direction will be (in) toward the low-concentration cells.

In different than the previous transport-based rCFD version

reported in Reference,32 the aforementioned methodology implicates

physically consistent enhancements regarding the inflow and outflow

modelings. Namely, the inflow modeling before was by setting a con-

centration source next to the inlet and convey it following the internal

tracers. Therefore, in some situations when the portion of these

tracers is insufficient, a discontinuity in the concentration transport

can be produced. On the other hand, the outflow was globally aligned

to a constant value of the inflow, and was uniformly distributed over

the outlet adjacent cells. In this case, the going-out mass concentra-

tion is roughly approximated with no local accuracy. All these features

are resolved in the current version to make the methodology more

consistent and associated totally to the particles dynamics. The func-

tionalities therein besides the incoming experienced diffusion are

implemented in the frame of user-defined functions code in the soft-

ware ANSYS/Fluent.

3 | RESULTS AND DISCUSSION

We consider the simulation of a lab-scale (Geldart B particle) bubbling

fluidized bed, displayed in Figure 3a, within the framework of the
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following separated cases. First, introduce a mixture of two species on

the gas phase by injecting a red-color species into the lateral gas inlet

and a blue-color species into the bottom gas inlet. Second, set an ini-

tial mixture of a red-color (small rectangular region) and blue-color

(elsewhere) species, on the solid phase (Figure 3c). Third, consider the

enthalpy transport with an initial hot rectangular region of the solid

phase, that is, Ts = 500 K (Figure 3d), and a continuous cold air, that is,

Tg = 300 K, passing within all air inlets.

To do so, the mathematical models described in Section 2.1 and

Appendix are numerically resolved in Cartesian coordinates r = (x, y, z),

using a uniform hexahedral grid and adopting the Eulerian multiphase

model available by ANSYS/Fluent code. We mainly seek the proper appli-

cation of the transport-based rCFD model in fluidized bed, so we settle

with an acceptable grid size Δri = 2.57 × 10−3 m � 5ds
35 (five times the

grain diameter), for a reactor geometry {x = (−0.009375:0.009375) m,

y = (−0.074:0.074) m, z = (0:0.4) m}, that captures well all relevant hetero-

geneities in the framework of TFM large-scale approach. The

selected dimensions correspond to our local experimental setup

that allows us an optical accessibility in such future experiments.

Regarding the numerical methods, a finite-volume first-order

upwind scheme is adopted for the spatial discretization of all con-

vective terms in the governing equations (Equations A1, A8, A14,

and A15). The temporal discretization, by turn, follows the first-

order backward difference scheme and implicit integration in the

time derivatives and leading terms, therein. To solve the phasic

velocity–pressure coupling, the phase-coupling SIMPLE algorithm

available in ANSYS/Fluent for multiphase flows is employed.

Therein, the velocities are solved and coupled by phases in a segre-

gated fashion; while the fluxes are reconstructed at the faces of the

control volume to correct the pressure, afterward, on the base of

the total continuity. The coefficients of the pressure correction

equations come from the coupled per phase momentum equations,

and the final linear system is resolved using the multigrid method.

For details about the numerical methods, algorithms and solver, the

reader is referred to.36 The consistent time step Δt is defined by an

appropriate value Δt = 5 × 10−4 s, which satisfies the Courant num-

ber Co = ugΔt/Δr ≤ 0.1, at the operating conditions. We firstly run

F IGURE 2 Informative graphics on the transport-based recurrence computational fluid dynamics methodology [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 1 Sketch of the recurrence path construction strategy,
where the off-diagonal red lines correspond to the maximal
recurrence norm [Color figure can be viewed at
wileyonlinelibrary.com]
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the simulation an initial period of τinitial = 3 s that ensures the

starting of bubbles formation and the (pseudo) periodicity of the

system, at which all initial transient effects are certainly washed

out. Afterward, the evolution of various fields such as, the pressure

p, the solid vertical velocity ws, and the solid volume fraction ϵs, at a

central probing point, ◊(0, 0, 0.05), inside the bed, is monitored in

F IGURE 3 (a) A schematic representation of the simulated fluidized bed of dimensions �2 cm × 15 cm × 40 cm. Air enters through lateral
and bottom inlets, with the infusion of red-color and blue-color species, respectively. It fluidizes the solid particles (dark volume) and leaves the
domain through a shrank outlet at the top. All the walls of the domain are imposed to be no-slip boundaries and the diamond symbol ◊(0, 0,
0.05), represents the probing point considered. (b) An instantaneous mid-width picture of ϵs, in red, that corresponds to the isolating moment

n = 250 on R ϵsð Þ matrix, while (c) and (d) expose the initial conditions of species and temperature on the solid phase, respectively [Color figure can
be viewed at wileyonlinelibrary.com]

(a)

(c)

(b)

(d)

F IGURE 4 Probe values of (a) pressure, (b) z-component solid velocity, and (c) solid volume fraction, at the sampling point ◊(0, 0, 0.05),
together with their average quantities. (d) The energy value of Fourier components including the minimum critical frequency, that is, lowest-lying
peak that has to be exceeded to enable useful recurrence statistics [Color figure can be viewed at wileyonlinelibrary.com]
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Figures 4a–c, together with its average and spectral analysis

(Figure 4d). They have been utilized, a priori, to decide the recur-

rence properties, that is, Δtrec and τrec, given by Equation (1) and

(2), respectively.

Following the mean-square values and temporal derivatives,

the variational quantities indicate,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2h i= _p2h i

p
≈0:03s,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
s

� �
= _w2

s

� �q
≈0:056s and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2s
� �

= _ϵ2s
� �q

≈0:077s , for p, ws, and ϵs,

respectively. Using the aid of different similar analyzing points, not

shown here, the consistent value is decided as Δtrec = 0.008 s, that

resolves adequately the global pseudoperiodic characteristics. All sim-

ulation details and recurrence properties are summarized in Table 1,

where τrec = τ
γg
rec , is identified for the period used in the gaseous spe-

cies modeling, while τγsrec and τTrec are defined for those periods in the

solid species and temperature transport, respectively. In different than

the case of continuous coming-in gaseous species, the solid species

and heat transfer problems are set by an initial value, as a small

rectangular region, for the solid mass fraction and solid tempera-

ture. In the solid species problem, this initial mass fraction (unity)

will be diffused in time till the reach of the uniform concentration.

Hence, in order to avoid this final attainment, τγsrec is decided shorter

than in the gaseous species. Likewise, in the temperature transport

problem, the heat will be transfered inside the solid phase itself and

toward the gas phase. This last in turn, is continuously going-out

through the outlet, and thus τTrec is selected shorter in order to avoid

the uniform cold extent.

During the full CFD τrec simulation, the fields of solid fluxes

and volume fraction are stored each Δtrec = 16Δt, to eventually

obtain 400 flow frames. The recurrence matrices (Equation 4) are

then constructed upon the recurrence norm (Equation 3), and

shown in Figures 5a,b, for R ϵsð Þ and R ϵsusð Þ , respectively. Following the

TABLE 1 Summary of the fluidized bed simulation parameters and recurrence properties

Property Value Unit Simulation details Value Unit

Gas density ρg 1.2 kg/m3 Ncell 66,000 Vcell

Solid density ρs 1,400 kg/m3 Vcell 1.7 × 10−8 m3

Species density ρ j1,2 1.2 kg/m3 Δri 2.57 × 10−3 m

Grain diameter ds 0.5 mm τinitial 3 s

Thermal conductivity κs = κg 0.0242 W/m K τrec = τ
γg
rec 3.2 s

Gas viscosity μg 1.79 × 10−5 kg/m s Δt 5 × 10−4 s

Bed mass mbed 215 g Δtrec 0.008 s

Initial bed height lbed 0.1 m kuink 1 m/s

Species diffusivity D j1,2 2.88 × 10−5 m2/s Ntr {70,000, 106} Tracer

Gas specific heat cgp 1,006.42 J/kg K τγsrec 1.6 s

Solid specific heat csp 840 J/kg K τTrec 1.6 s

F IGURE 5 Plots of recurrence matrix constructed upon the recurrence norm: (a) R ϵsð Þ and (b) R ϵsusð Þ [Color figure can be viewed at
wileyonlinelibrary.com]
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deep fluctuated pressure, the solid flux ϵsus, reveals a coherent rele-

vance to the uniform flow periodicity (note the signal of ws in

Figure 4b). Namely, it highly discloses the fingerprints of rising bub-

bles passage, with high effective solid mixing through the wake effect

particles, emulsion drift particles, and the bubble eruptions particles.37

The gas flow, however, evolves as dense flow in rich solid areas, visi-

ble bubbles, and throughflow which bypasses through the bubbles.38

Hence ϵgug includes high fluctuated dynamics that absentees the

recurrence between states and can be less appropriate for the period-

icity disclosure.

The volume fraction, ϵs/g, in turn, stands to be a strong and

directly sensitive field to the bubbles identification, where its

recurrence norm value is identical for the gas and solid phases,

R ϵsð Þ �R ϵgð Þ . Looking at the recurrence matrices in Figure 5, one can

notice the run of irregular off-diagonal patterns, parallel to the diago-

nal, and remarked by local minima and maxima of recurrence norm.

They indicate a well-similar evolution of flow repeated over some

time and endures relatively over few Δtrec, in corresponding to the

frequency of the bubbles emission. Both recurrence matrices possess

approximately similar fingerprint structures that can differ by the evo-

lution moments. For instance, the isolating moment n = 250 on R ϵsð Þ

matrix and which corresponds to an unusual big bubble expanded

across the bed (see the matching snapshot in Figure 3b), has its sign

on R ϵsusð Þ matrix at n�276. At the end, the two R matrices are con-

nected and well representative.

3.1 | Reconstruction of species transport on gas
phase

In this context, we continue the rCFD application by assessing the

enhanced methodology of transport-based rCFD model (Figure 2)

for the reproduction of gaseous species transport all along τ
γg
rec . In

other words, the tracer-based shift information of Ntr = 106 tracers,

linked to the gas dynamics, and stored for 400 flow frames are

retrieved in sequential order, that is, the recurrence path is {f1, f2,…,

f400}. The offline steps outlined in Section 2.2 are applied in corre-

spondence, to transport a passive scalar with boundary inputs as, the

lateral red-color concentration, γinletc = 1 , and the bottom blue-color

concentration, γinletc = 0 . By this way, we mimic the transport of the

two species mass fraction injected, with a time step Δtrec = 16Δt. The

key feature is about how to properly calibrate the correcting diffusion

Step (5), after the ill-conservative convection procedure accomplished

in Steps (1), (2), and (3). Its error implicates compensative diffusion

effects coming from the physical molecular diffusion in part, and the

fluctuated walk that species undergo along its path Δtrec. Let us say

the integral diffusion regarding to the temporal filtering with Δtrec. In

addition to these physically based sources, a numerical error can also

come from the interpolated impartation of concentration in filling the

holes Step (3). In this regard the error can be reduced by using a suffi-

cient number of tracking tracers Ntr that ensures the (hit) transporta-

tion for most of the grid cells. Hence, the face-swap diffusion

operator is implemented in the framework of two objectives.

3.1.1 | Global mass species conservation

Following the global conservation condition of integral mass concen-

tration over Δtrec, and which is given in Equation (7), the face-swap

concentration Δγ (Equation 9) between two cells, is passed in or out,

as explained in Step (5). Note that this criterion is physically based

and comprehensive to correct the mass balance deviation in local-

careless way. Talking in global sense, the diffusion amount needed

can notably vary between flow frames, in relevance to the species life-

time that is essentially associated to the gas dynamics (i.e., ϵg, ϵgug).

Therefore, instead of using a constant diffusion factor f, its value is

defined in an approximate dynamical way. Namely, given an upper,

1/23, and lower, 1/27, bound, the value of the diffusion factor is

increasing/decreasing if the RHS of Equation (7), tends to be bigger/

smaller than the LHS, from one frame to the next. Following that atti-

tude, the diffusion procedure is applied standalone in only one loop

step for each frame, and the pertinent outcomes have revealed a fea-

sible chasing to the actual full CFD species simulation. For example,

by considering a visual instantaneous comparison (at t = 6.2 s)

between the full CFD results and rCFD, as shown in Figures 6a, one

can observe the good tracing using very short runtime; however, an

excess of the concentration transported is sustained (Figure 6a, mid-

dle). This excess is clearly pronounced in the evolution of the global

mass quantity, that is, mγ =
Pcells

i=1 ρgϵ
i
gγci Vcell

	 

computed all along τ

γg
rec ,

and represented in Figure 6b (bottom). Therein, the rCFD results indi-

cate a higher concentration than it is out to be in the mass fraction

species. In a detailed review, as well, the high concentration is rem-

arked on γ histogram chart generated for the same instant in

Figure 6a and displayed in Figure 6b (top). The frequency, therein, is

shown in a logarithmic scale in order to highlight the few high γ

distribution.

On the basis of that, one can conclude that applying one loop dif-

fusion standalone cannot return the proper diffusive consequences

even though it is a very fast procedure from practical point of view.

Another approach is sought in the same line by doing multiple diffu-

sion loops till the convergence between the two sides in Equation (7).

For the sake of quickness and simplicity, the diffusion factor is chosen

as a constant value, that is, f = 1/29, which is proportional to the

molecular diffusion coefficient, that is, f ≈ DjΔt/A. It has to be cer-

tainly smaller than the lower bound in the dynamical procedure above,

where A here is supposed to be the face area through which the con-

centration swapping takes place. This factor contributes into the

molecular diffusive part, and by repeating it several times in consis-

tency with the mass balance converging, the proper amount of diffu-

sion in each particular frame will be recovered. Each frame requires a

different number of diffusion loops to eventually make the approach

somewhat expensive (see the performance Figure 16a in Section 3.5).

If we explore the same mere optical comparison in Figure 6, the new

outcomes, referred as confined molecular diffusion, give a subtle cap-

turing to the actual full CFD evolution in instant (Figures 6a, right) and

global (Figure 6b, bottom) terms. They deliver a nice reproduction to

the species path, but in such locally rough transport. Looking closely,

the procedure relatively dissipates the concentration in some regions,
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for instance, outside of the bed, more than what is out to do. While,

in other parts close to the source, the operator does not dissipate suf-

ficiently. Note the histogram, particularly, in Figure 6b (top). Finally,

these globally controlled models are feasible in terms of the main pur-

pose of rCFD and saving considerable computational effort, but in

spite of that a better calibration using a local diffusion is somehow

mandatory.

3.1.2 | Local diffusion

In order to derive, accurately, all compensative diffusion effects, we

firstly execute a one globally controlled diffusion loop characterized

by a dynamical determination of the diffusion factor (see

Section 3.1.1). This step satisfies an initial correction to the

methodology's error in a featureless global way. Then we follow it by

a kind of a fast and local physical diffusion approach. To that end, the

oscillated (random) walk of species parcel along its path, from the

beginning to the end Δtrec, is assumed as a turbulent diffusion and

computed on the base of the turbulent kinetic energy of the tracked

tracers. Taking the online temporal sampling of tracers velocity fluctu-

ations u0p , that is, velocity variance, during Δtrec, the turbulent kinetic

energy results as

k =
1
2

u02p

D E
+ v02p

D E
+ w02

p

D E	 

: ð10Þ

The sample variance of each velocity component, as a scalar hφ02i,
is computed in online running way. Namely, we adopt a fast and

cheap algorithm for evaluating the running variance directly at the

same arrive moment without the need to save data for a second

pass.39 The method implies calculating of two variants, that is, M and

S, for each individual tracer, and which are being updated each particle

time step along Δtrec. Giving initial values, M1 = φ1 and S1 = 0, the sub-

sequent i moment for these quantities is computed as

Mi =Mi−1 +
φi−Mi−1ð Þ

i
and Si = Si−1 + φi−Mi−1ð Þ φi−Mið Þ, ð11Þ

(a) (b)

F IGURE 6 (a) Comparative instantaneous pictures (t = 6.2 s) between the actual full computational fluid dynamics (CFD) red-color specie
simulation (left) and recurrence CFD (rCFD) reconstructed concentration using one dynamical f diffusion loop (middle) and multiple constant
f diffusion loops, as the confined molecular diffusion (right). (b) At the top, shows the histogram of concentration for the pictures presented in
(a) in addition to the rCFD outcomes, for the same moment, using the local diffusion (shown in Figure 8a, right). The frequency of the histogram is
demonstrated in a logarithmic scale. (b) At the bottom, exposes the evolution of the global mass quantity of concentration results experienced in
(a). All rCFD outcomes are obtained using Ntr = 106 [Color figure can be viewed at wileyonlinelibrary.com]
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for 2 ≤ i ≤ np, where np is the accumulated number of particle/tracer

time steps along Δtrec. Finally, the variance value ends to

φ02� �
= Snp= np−1ð Þ, and stored as an auxiliary parameter in the tracers

database. After figuring the turbulent kinetic energy k (Equation 10),

the consequential turbulent diffusion is estimated by a mixing length

model,40 that is,

Dt
j =

νtj
Sct

, with νtj =CΔk
1=2: ð12Þ

Therein, C is an empirical constant, while Sct = 0.7 is the tur-

bulent Schmidt number and CΔ = C(ΔxΔyΔz)1/3 is the deterministic

mixing length scale. Roughly speaking, this is basically identical to

the suggestion of Kolmogorov and Prandtl (see references in

Pope40) for approaching the turbulent viscosity νtj in the frame of

the gradient-diffusion hypothesis and Reynolds-averaged Navier–

Stokes fluid turbulence models. In our case, we neither model any

unresolved small scale fluctuations linearly aligned with the gradi-

ent of mean γ, nor resolve any empirical k-equation in order to

close the system; we only estimate the accumulated possible diffu-

sion of species along Δtrec, following the tracers dynamics. By sum-

ming up this temporal coarsening amount, Dt
j , to the molecular

diffusion part, Dj, the consecutive local physical diffusion step can be

given as

Δγ = Dj +D
t
j

	 
 γci+1 −γci
Δrci ,ci+1 �nA

A
Δtrec
Vcell

� �
, ð13Þ

passing in γci and out γci+1 . Here, Δrci ,ci+1 is the vector distance from

ci to ci + 1 and nA is the surface-normal vector on the same

direction. Probing different constants C in Equation (12), with a

special near-wall treatment, that is, Δ=0:5V1=3
cell , the tests are dem-

onstrated in Figures 7 and 8, together with the outcomes of the

previous approaches. In global-scale investigations, the suitable

concentration modeling has suggested a constant value of

C = 0.2, that best fits the full CFD evolution (Figure 7a), There-

with, the new evolution of the global mass shows identical

behavior to the confined molecular diffusion by performing only

two diffusion loops (one dynamical + one physical), to eventually

be a very economic procedure (see the performance Figure 16a

in Section 3.5).

On the other hand, the instant reproduction of species struc-

tures is enhanced using the new strategy, as can carefully be

noticed in Figures 8a. It relatively gives better following than the

confined approach (see the histogram in Figure 6b, top), as well on

the mean fields shown in Figure 8b. Therein, the mid-width profiles

of hγi, averaged over all frames, and extracted at the lines (0, y,

z = {0.04, 0.08, 0.1, 0.2, 0.3}), are mapped. One can note how the

new procedure can accurately capture the full CFD species distribu-

tion even in very low concentration regions, for example, at

z = 0.04. In conclusion, the enhanced local diffusion comes to be

the reliable and most feasible approach for the fast methodology of

transport-based rCFD.

3.2 | Reconstruction of species transport on solid
phase

In this problem, and identical to the reproduction procedure of gas-

eous species transport, the Lagrangian shift information of Ntr = 106

tracers, linked to the solid dynamics, and stored for 200 flow frames

(τγsrec), are retrieved in sequential order. Following the offline Step (2.2),

(a) (b)

F IGURE 7 (a) The assessed evolution of global mass recurrence computational fluid dynamics (rCFD) concentration using the local diffusion
approach, and probing different C values in Equation 12. (b) The same Figure 6b (bottom), with adding the rCFD local diffusion evolution (C = 0.2).
All rCFD outcomes are obtained using Ntr = 106 [Color figure can be viewed at wileyonlinelibrary.com]
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the transportation starts with an initial imposed rectangular red-color

passive scalar, quite identical to the full CFD simulation conditions.

Then, the proper local diffusion approach, outlined in 3.1.2, is

employed, as well, for solid species transportation. Therein, the physi-

cal diffusion step is fetched by Equation (13), and the molecular solid

diffusivity, here, is considered constant and equivalent to the gas

phase.

Because the injected tracers in this problem chase the solid veloc-

ities, which account to smaller magnitudes than the gas phase, the

sampling turbulent kinetic energy k becomes lower. And, in conse-

quence, the turbulent diffusion (Equation 12) requires a higher value

for the empirical constant, which is found to be suitable by C = 0.8. By

doing so, a feasible reconstruction of solid species structures is

obtained using a cheap and short runtime computations (see the per-

formance Figure 16b in Section 3.5). On the other hand of an optical

instant comparisons, two moments, at the beginning, t = 3.16 s, and

the end t = 4.6 s, of τγsrec , are mapped in Figure 9 for the field (ϵsγ). It

can be noticed an acceptable matching between the rCFD results and

full CFD counterparts. Moreover, the mid-width profiles, averaged

over 200 flow frames, for hϵsγi, and extracted inside the bed, at posi-

tions (x = 0, y, z = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,

0.09} m), have revealed a satisfied rCFD modeling, as represented in

Figure 10.

3.3 | Reconstruction of heat transport

Different than the previous offline rCFD methodology, which pre-

dicts the transport of standalone-phase species, the heat transfer,

herein, sustains an interaction between the gas and solid phase. In

order to capture this interaction, the values of heat transfer coeffi-

cient Nu are computed during the online tracking procedure, that is,

τTrec , beforehand, and stored as an auxiliary online data. In that stage,

both the gas and solid dynamics are simultaneously tracked by

injecting two groups of Ntr = 5×105, massless tracers, to eventually

produce two shift information data sets. Afterward, the reconstructed

transportation of Tg and Ts scalars with the selfsame full CFD initial

conditions is commenced in the framework of the following modified

rCFD algorithm:

1. Transport Tg following the inlet gas tracers shift positions, and

employing a two-halfs temporal integration step for the

(a) (b)

F IGURE 8 (a) Comparative instantaneous pictures (t = 6.2 s), similar to Figure 6a, for the full computational fluid dynamics (CFD) species
simulation (left) and recurrence CFD (rCFD) reconstruction (right), adopting the local diffusion approach (C = 0.2). (b) The corresponding resultant
mean profiles, extracted at (0, y, z = {0.04, 0.08, 0.1, 0.2, 0.3}), from bottom to top, respectively, and gotten following the confined molecular
diffusion, dynamic f diffusion and the local diffusion approaches (C = 0.2). All rCFD outcomes are obtained using Ntr = 106 [Color figure can be
viewed at wileyonlinelibrary.com]
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transportation. Namely, we use the analytical solution (complete

mixing) of temperature evolution in the bulk granular material41 to

describe the interacting transport of Tg from c0 (start cell) to c1

(end cell) during Δtrec, as follows:

T0:5Δtrec
g = Ts,c0 + Tg,c0 −Ts,c0ð Þe−0:5Δtrec=T c0 ,

TΔtrec
g,c1

= Ts,c1 + T0:5Δtrec
g −Ts,c1

	 

e−0:5Δtrec=T c1 ,

ð14Þ

where

T c0 =
ϵg,c0ρgc

g
pd

2
s

6ϵs,c0κgNuc0
and T c1 =

ϵg,c1ρgc
g
pd

2
s

6ϵs,c1κgNuc1
ð15Þ

are the time scales of Tg change. Here, Tg,c0 = Tg,inlet = 300K for all inlet

tracers. If we name the exchanging inlet temperature as Tinlet
g,c1

= TΔtrec
g,c1

,

the resultant Tg transported into the target cell c1, in case of multiple

hits, is given by

Tg =

Phits
i=1

viinletT
inlet
g,c1

Phits
i=1

viinlet

, with i=1,2,…,hits: ð16Þ

During this transportation, the quantity of heat transfered due to

the interaction with Ts is also summed up as

Qg,c1 =
Xhits
i=1

ϵgv
i
trρgc

g
p Tg,c0 −TΔtrec

g,c1

	 

: ð17Þ

2. Transport Tg following the shift positions of internal gas tracers,

and employing the same method before. The exchanging tempera-

ture TΔtrec
g,c1

is evaluated from Equation (14) and the resultant Tg

convected into c1 follows:

Tg =

Phits
i=1v

i
trT

Δtrec
g,c1Phits

i=1v
i
tr

, with i=1,2,…,hits: ð18Þ

Likewise, the amount of heat transfered Qg,c1 is summed up in c1

using Equation (17).

3. Fill the holes of Tg and Qg fields.

4. Consider (store) Tg of the start cell outlet gas tracers Toutlet
g,c , which

leave the domain during Δtrec.

F IGURE 9 Comparative instantaneous pictures between the actual full computational fluid dynamics (CFD) red-color solid specie (ϵsγ) (left)
and recurrence CFD (rCFD) counterparts (right), at the moments, t = 3.16 s (a) and t = 4.6 s (b). rCFD results are obtained adopting the local
diffusion approach (C = 0.8) and using Ntr = 106 [Color figure can be viewed at wileyonlinelibrary.com]
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5. One step correcting Tg controlled by the physical global balance

between the coming-in, accumulated, exchanged and going-out

gas enthalpy through the total domain, that is,

mhgð Þt+Δtrec = mhgð Þt + _minh
in
g − _mouth

out
g

	 

Δtrec−Qg, ð19Þ

which can be written as

Pcells
i=1

ϵigTg,ci Vcell

	 
t+Δtrec
=
Pinlet
i=1

viinletT
inlet
g,ci

−
Poutlet
i=1

vioutletT
outlet
g,ci

+
Pcells
i=1

ϵigTg,ci Vcell

	 
t

−

Pcells
i=1

Qg,ci

ρgc
g
p

� � ,

ð20Þ

Similar to Step (5) in Section 2.2, the swapped/shifted portion of

temperatures reads,

ΔTg = f
Tg,ci −Tg,ci+1

2
, ð21Þ

where f is dynamically decided, similar to Section 3.1.1.

6. One-step physical diffusion modeling that compensates the heat

transfered by conduction in the gas phase as

qg,ci = Dg,ci +D
t
g,ci

	 

r2Tg,ci , ð22Þ

where Dg,ci = κg= ρgc
g
p

	 

and Dt

g,ci
=CgΔk1=2g =Prt . Here, Dg,ci is the

molecular thermal diffusivity and Dt
g,ci

is the mixing length turbulent

diffusion which is computed on the base of the turbulent kinetic

energy of gas tracers kg with an empirical constant Cg = 0.2. Prt = 0.4

is the turbulent Prandtl number.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 10 The corresponding recurrence computational fluid dynamics resultant mean profiles, extracted at the mid-width (x = 0) and
different heights (a) z = 0.01, (b) z = 0.02, (c) z = 0.03, (d) z = 0.04, (e) z = 0.05, (f) z = 0.06, (g) z = 0.07, (h) z = 0.08, and (i) z = 0.09, inside the bed
[Color figure can be viewed at wileyonlinelibrary.com]
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Afterward, we iterate one-pass over the solid phase, transporting

Ts following the solid tracers and adding the quantities of Qg, as

follows:

1. Transport Ts following the shift positions of internal solid tracers.

The exchanging temperature will be

TΔtrec
s,c1

= Ts,c0 +
Qg,c1

ϵsVcellρscsp
, ð23Þ

and the resultant Ts convected into c1 is given by

Ts =

Phits
i=1v

i
trT

Δtrec
s,c1Phits

i=1v
i
tr

,with i=1,2,…,hits: ð24Þ

2. Fill the holes of Ts.

3. Consider Toutlet
s,c for the solid outlet tracers that leave the

domain during Δtrec, and which are very rare so we can

neglect them.

4. One step correcting Ts controlled by the physical global balance

between the accumulated and exchanged solid enthalpy through

the total domain, that is,

mhsð Þt +Δtrec = mhsð Þt +Qg, ð25Þ

which can be written as

Xcells
i=1

ϵisTs,ci Vcell

� �t+Δtrec = Xcells
i=1

ϵisTs,ciVcell

� �t
+

Pcells
i=1Qg,ci

ρscsp
: ð26Þ

Identically to the gas phase, the specific portion

ΔTs = f
Ts,ci −Ts,ci+1

2
ð27Þ

is swapped in or out toward Ts cells and f is dynamically decided.

5. One-step physical diffusion modeling that compensates the heat

transfered by conduction in the solid phase as

qs,ci = Ds,ci +D
t
s,ci

	 

r2Ts,ci , ð28Þ

where Ds,ci = κs= ρsc
s
p

	 

is the molecular thermal diffusivity and simi-

larly Dt
s,ci

=CsΔk1=2s =Prt is the mixing length turbulent diffusion com-

puted upon ks with an empirical constant Cs = {0.2, 0.4}.

Applying that algorithm, the outcomes have demonstrated a

practical throughout modeling of heat transfer in bubbling fluidized

F IGURE 11 Comparative instantaneous picture of Tg (a) and Ts (b), between the actual full computational fluid dynamics (CFD) (left) and
recurrence CFD (rCFD) results (right) using the local diffusion (Cs = Cg = 0.2), at the moment t = 4.6 s. The results are obtained using Ntr = 5 × 105

on each phase [Color figure can be viewed at wileyonlinelibrary.com]
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beds by consuming a very short runtime computations (see the

performance Figure 16c in Section 3.5). Analogously to species

transport, an instantaneous snapshot of Tg and Ts, at t = 4.6 s, ren-

dered within the mid-width plane x = 0, for rCFD (right) and full

CFD (left) simulations is explored in Figure 11. Again, an accept-

able modeling can be observed, insofar as, the exponential tempo-

ral evolution (Equations 14) and disregarding the work of

expansion of the void fraction (Equations A15), are accounted as

practical approximations in rCFD model. If we look at the mean

temperature patterns averaged over τTrec and showed in profiles, at

(x = 0, y, z = {0.025, 0.05, 0.075} m) in Figure 12 and (x = 0, y, z = {0.1,

0.2, 0.3} m) in Figure 13; one can see the viable match given by rCFD

modeling. Therein, the inherited enhancement of the local physical

diffusion can clearly be caught, inside (z<0.1 m) and outside (z>0.1),

the bed (see profiles at z = 0.025 in Figure 12 and z = 0.3 in

Figure 13).

F IGURE 12 Recurrence computational fluid dynamics resultant mean profiles of hTgi (top) and hTsi (bottom), extracted at the mid-width x = 0
and different heights z = 0.025 (left) z = 0.05 (middle) and z = 0.075 (right) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Recurrence computational fluid dynamics resultant mean profiles of hTgi (top) and hTsi (bottom), extracted at the mid-width x = 0
and different heights z = 0.1 (left) z = 0.2 (middle) and z = 0.3 (right) [Color figure can be viewed at wileyonlinelibrary.com]
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3.4 | Time extrapolation of species transport on
gas phase

The main concept of rCFD is tracing the passive scalar on stitched

recurrent moments prolonged far beyond τrec, in a fast and low-cost

modeling. Using the robust and randomly based approximate,

depicted in Figure 1, we start from f1 on the recurrence matrices

(Figure 5) and move with arbitrary intervals and jumps, to generate in

due course, a sequence of, for example, 2,000 recurrent flow frames.

Sweeping over this path, the gaseous passive propagation is predicted

till 22 s on the base of τ
γg
rec = 3:2s database and time step Δtrec = 16Δt.

For a comparative perspective, the concentration is traced using

sequences based on R ϵsð Þ and R ϵsusð Þ recurrence matrices, and applying

the favorable (one step dynamical + one step physical physical) diffu-

sion approach in Step (5). While an accurate description of species tra-

jectories might not be of significant interest in a long-term transfer,

but its distribution on the mean picture yes. To that end, the temporal

mean patterns extracted at the mid-width (y, z) plane, are drawn in

Figure 14a, for R ϵsusð Þ rCFD together with the full CFD means. One

can notice the good following using the solid dynamics base which

confers a better indication on the bubbles recurrence. Moreover, the

similar trends, identical to Figure 8b, are unveiled in Figure 14b, to

finally indicate a viable rCFD modeling of gaseous species transport

using a very low computational demand (see the performance

Figure 16d in Section 3.5). Digging up a consistency, the rCFD mean

profiles, illustrated in Figure 14b, have shown an acceptable agree-

ment with the full CFD counterparts bearing a foremost local devia-

tion about 22%, in the high-γ regions. This in due time, motivates the

broad applications of transport-based rCFD in predicting the long-

term transport of different species, interacted chemically and ther-

mally in fluidized bed, and propagated on both phases. This will con-

stitute our future focus where considering a continuous thermal and

chemical source is an important condition for an effective long-term

transport modeling.

3.5 | Impacts and efficiency

At the crossroad between modeling accuracy and the storage needed

for the empirical framework of transport-based rCFD, a Lagrangian

coarse graining procedure is noteworthy.32 Namely, by reducing the

total number of tracers Ntr, up to which the internal seeding volume is

Vtr ≥ Vcell, the size of recurrence data frames becomes meaningfully

smaller. And hence, the entire transport runtime becomes of very

short extent. In order to test this impact, the reconstruction initiative

of gaseous species transport is repeated on the same 400 frames

using a total number of tracers, Ntr = 70,000, and adopting the favor-

able local diffusion approach. By doing so, we redo the selfsame

(a) (b)

F IGURE 14 (a) Comparative mid-width (x = 0) mean pictures for the full computational fluid dynamics (CFD) species simulation (left) and
recurrence CFD (rCFD) time-extrapolation results (right). The outcomes are obtained applying the local diffusion approach (C = 0.2) and following
the recurrence path based on R ϵsusð Þ matrix. (b) The corresponding resultant mean profiles, extracted at z = {0.04, 0.08, 0.1, 0.2, 0.3}, from the
bottom to the top in (a), respectively. Therein, the outcomes of the recurrence path based on both R ϵsð Þ and R ϵsusð Þ matrices, are considered. All
rCFD results are obtained using Ntr = 106 [Color figure can be viewed at wileyonlinelibrary.com]
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aspects, previously outlined in Figure 8, and show them in Figure 15.

From a precise look, the coarsening stratagem implies a bold transport

for concentration that needs to be smoothed in-between the struc-

tures (Figure 15a). This is obviously returned to the less number of

tracers that could convey more information on ϵg from the neighbor-

ing hit cells. In general, all procedures therein are conservative to γ

mass due to the proper local diffusion applied. Nonetheless, the spa-

tial coarse-grained transport which transfers the inertial energy fol-

lowing the tracers, as a large negative straining, has its influence on γ

mapping. In spite of that, an attainable tracing of gaseous species

transport can be obtained using Ntr = 70,000, and relatively gives

analogous results on the mean fields (Figure 15b), spending even

cheaper cost (note the performance Figure 16a,b).

Going through the rCFD performance, the computational time

consumed for all current applications is graphically outlined in

Figure 16. We firstly carry out an initial simulation of 3 s, needed to

hit the pseudoperiodic flow, by the use of 12 CPUs and persisting

over 7 hr CPU time per processor. This is followed by a short-term full

CFD simulation lasting about �3 s, thereby the 400 flow frames of

recurrence database are cached. For cases of solid species transport

and heat transfer, the database is shorten to 200 flow frames with a

lasting runtime �1.5 s. After establishing these requisites, the effi-

ciency of the passive transportation rCFD is depicted by a comparison

of one CPU runtime between rCFD and the long-term full CFD coun-

terpart. Note that the transport-based rCFD methodology is also

working, in parallel mode, on the same number of CPUs. Experiencing

different approaches, as displayed in Figure 16a, the most feasible

rCFD indicates a reduction of CPU time from 7 hr to 28 s, in the

framework of gaseous species reconstruction and Ntr = 106 tracers.

This dramatic lowering in cost implicates a speed-up ratio of

900, which is further raised to 1,575, using Ntr = 70,000 tracers. For

the case of applying a confined molecular diffusion, the computational

runtime is slightly increased to 180 s, however, it is still located in the

limits of a very reliable application. Regarding the solid species recon-

struction, the feasible rCFD application implies a reduction from 3.5 hr

to 9 s with a 1,400 speed-up ratio, while the temperature reconstruc-

tion reduces 8 hr CPU time to 18 s with 1,600 speed-up ratio.

If we extend the gaseous species prediction much longer time, for

instance, till 22 s, with a time-extrapolating rCFD, the computational

efficiency is rather higher. It drastically saves an amount of 37.3 hr

− 148 s = 37.29 hr (see Figure 16d) for Ntr = 106, while in the coarse-

graining case the cost becomes almost negligible.

(a) (b)

F IGURE 15 Identical representation of results, as in Figure 8, but using Ntr = 70,000, and applying the local diffusion approach (C = 0.2) on
instant (a) and mean (b) fields. The mean analogous profiles in case of using Ntr = 106, are also shown therewith [Color figure can be viewed at
wileyonlinelibrary.com]
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3.6 | Limitations

The above significant saving in computational effort comes on

account of some technical and phenomenology relevant limitations.

For instance, as previously outlined in Pirker et al.,32 the

pseudoperiodicity nature of the flow is an essential requirement. Even

though it can clearly be remarkable on the energy containing large

scales, the period of this periodicity has to be consistent and not too

long. In such flows where the nonlinearity is dominant (e.g., self-

organized buoyancy-driven systems), the small scales dynamics can

importantly change the evolution of the total system and deliver the

rCFD to sudden changes. Another difficulty can be related to the

(a)

(b)

(c)

(d)

F IGURE 16 Performance of recurrence computational fluid dynamics (rCFD) modeling for the reconstruction procedure of (a) the gaseous
species using different assumptions and inputs, (b) the solid species using Ntr = 106 and local diffusion approach, and (c) the temperature using
Ntr = 5 × 105 on each phase and the local diffusion approach. (d) The performance of the long-term time-extrapolation rCFD modeling for
gaseous species [Color figure can be viewed at wileyonlinelibrary.com]

DABBAGH ET AL. 18 of 20

http://wileyonlinelibrary.com


possible fast and active interactions between chemical species. There-

with, the physical properties can be changed, and more consequences

like the trigger of new solutions and heat source have to be consid-

ered. In this article, we have taken a step forward preparation to

access the modeling of interacted species transportation with chemi-

cal reactions. For this regard, further constituents on reaction kinetics

as production/consumption mass phase have to be tracked leading in

consequence, to higher storage amount of recurrence database. This

will be our primary concern in the future.

4 | CONCLUDING REMARKS

In this work, we have employed the transport-based rCFD modeling

for the fast and low-cost prediction of passive species and heat trans-

port in bubbling fluidized beds. To do so, a typical short-term full CFD

simulation has been performed using the framework of TFM, to com-

pose afterward into the backbone recurrence database. In the concep-

tual transport-based rCFD methodology, massless particles are used to

chase the gas and solid dynamics during each recurrence period, and

store the trajectories as start–end positions.32 Herein, we have implied

a physically consistent modeling for the inlet and outlet flows to be

completely based on the tracers themselves. Doing so, the time-

extrapolating rCFD modeling for passive transportation is applied in a

more proper aspect. After the establishment of species and tempera-

ture convection, the foremost appropriate diffusion is found to be in

performing one globally based diffusion step plus a kind of local physi-

cal diffusion concern. Similarly to the mixing length assumption,40 the

local physical diffusion has been approximated on the base of the tur-

bulent kinetic energy of tracers, sampled all along the recurrence

period. As a consequence, the rCFD outcomes of species and tempera-

ture reconstruction path have revealed a very reliable agreement with

the full CFD (TFM) evolution by consuming a very low computational

cost, and speed-up gaining up to 1,600. For large-scale simulations

which commonly use coarse grids, the efficiency of rCFD can be even

improved since the small scales, limiting Δtrec, are not resolved but

modeled in the context of filtered TFM.19,28,29 Considering this fast

and very cheap capacity, the transport-based rCFD method can consti-

tute a strong helpful tool that allows to access and resolve many

queries in the huge industrial applications.
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