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a b s t r a c t 

Reaction-diffusion(-advection) problems are well-known in chemical engineering and computational fluid 

dynamics. A common feature of these systems is a linear (or non-stiff) transport sub-system and a non- 

linear (or stiff), highly coupled chemistry sub-system. The expected numerical effort often prohibits a 

fully coupled solution of the system. Therefore, the system is split into a transport and a reaction sub- 

system, and each sub-system is solved using specialized solvers. Operator splitting schemes are required 

to reconstruct the solution of the initial system from the sub-system solutions. Steady-state preserving 

splitting schemes are particularly essential for steady-state calculations since local time stepping (LTS) or 

other methods based on fictional time rely on large time steps to be efficient. This work formally analyzes 

common splitting schemes for reaction-diffusion problems by stability analysis and checking the steady- 

state preservation of a representative linear scalar problem. Balanced and Simpler Balanced splitting are 

the only steady-state conservative schemes analyzed. Three new steady-state preserving splitting schemes 

are proposed based on the findings of the formal analysis. To achieve steady-state preservation, the new 

schemes use splitting constants based on either the mixing derivative or the chemistry derivative. The 

formal analysis is accompanied by a dimensionless perfectly stirred reactor (PSR) case and a hydrogen 

combustion case, both known to be challenging for operator splitting schemes. The test case results are in 

line with the theoretical results but indicate that the scalar linear analysis is nonviable to capture the full 

effects of the chemical sub-system. The Simpler and the newly proposed Consistent Staggered splitting 

schemes give significantly better results than the remaining ones while being second-order and first- 

order accurate, respectively. If temporal accuracy is irrelevant, e.g., for steady-state solvers, the proposed 

Consistent Adaptive splitting scheme is promising since it preserves the steady-state solution first-order 

time accurate with less function evaluations. 

© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Novel and modern combustion technologies aim to reduce pol- 

utant emissions and increase process efficiency. MILD combustion 

s a promising technology that aims to reduce pollutants by dis- 

ributing the flame over large regions compared to classical com- 

ustion [1] . Spreading the reaction layer reduces combustion in- 

ensity and final combustion temperatures and, thus, pollution for- 

ation. Oxidizer dilution and thorough mixing of fuel, oxidizer, 

nd recirculated exhaust gas enable the reaction zone transforma- 

ion compared to classical combustion. These process conditions 
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ncreases the occurrence of near-extinction and near-ignition states 

n flames. Another technology is (ultra-)lean combustion [2,3] , also 

eferred to as cool flames, which aims to keep the combustion 

emperature low by employing fuel-to-air ratios φ � 1 , which re- 

uces NO X emissions and increases combustion efficiency. Operat- 

ng near or below the flammability limit facilitates near-extinction 

nd near-ignition states in (ultra-)lean flames. Capturing these ef- 

ects is crucial for the reliable modeling of MILD and (ultra-)lean 

ames and the advancement of novel combustion technologies 

hrough Computational Fluid Dynamics (CFD) or other modeling 

pproaches. 

CFD codes use operator splitting to reduce the numerical ef- 

ort of combustion problems. The governing equations consist of a 

ransport (convection, diffusion) and a chemistry part. The trans- 
Institute. This is an open access article under the CC BY license 

https://doi.org/10.1016/j.combustflame.2023.112881
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2023.112881&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:markus.boesenhofer@tuwien.ac.at
http://www.tuwien.ac.at
http://www.k1-met.com
http://www.cfd.at
https://doi.org/10.1016/j.combustflame.2023.112881
http://creativecommons.org/licenses/by/4.0/


M. Bösenhofer Combustion and Flame 255 (2023) 112881 

p

l

f

t

l

s

s

s

s

p

i

f

u

d

r

a

s

p

b

d

u  

a

D

t

R

i

o

s

s

a

t

C

C

e

s

r

u

i

t

b

b

a  

t

t

2

fl

o

a

a

c

d

t

t

o

f

w

f

i

 

s

o

i

t

c

p

o

o  

[

�

 

f

�

�

�

�

E

s  

t

t

p

s

n

b∫
0 
ort problem can be solved segregated, while chemistry is a non- 

inear, coupled problem. Solving the reaction-diffusion problem 

ully coupled is challenging because of the numerical effort. Split- 

ing the original problem into a transport and a chemistry prob- 

em and solving them independently enables the use of specialized 

olvers for both equation types. The splitting, however, requires 

pecial algorithms to combine the independent solutions to recon- 

truct the original problem. These algorithms are called operator 

plitting schemes. Splitting schemes should reproduce the original 

roblem accurately in time and preserve its steady-state character- 

stics. 

In mathematics, operator splitting is widely used to solve dif- 

erential equations. The fractional-step method is one example 

sed to solve multi-dimensional problems [4,5] , e.g., the three- 

imensional Navier-Stokes equations. Operator splitting is used in 

eactive flow problems to reduce the numerical effort since it en- 

bles the following advantages or speed-up possibilities: 

i) in-situ adaptive tabulation (ISAT) for chemistry [6,7] : ISAT is 

a method to generate a chemistry lookup table on the fly 

during simulations, which automatically adapts to the chem- 

istry sub-problem [6,7] . 

ii) reduction of memory consumption: Segregated solution of 

the transport equations significantly reduces the peak mem- 

ory consumption compared to solving them fully cou- 

pled [8] . 

iii) application of specialized solvers: The loosely-coupled trans- 

port part and the highly-coupled chemistry part can be 

solved using specialized solvers for the different sub- 

problem types [9,10] . 

The main disadvantage of operator splitting is the temporal and 

teady-state errors introduced by dividing the problem into sub- 

roblems. 

Near-ignition and near-extinction states have been shown to 

e challenging for operator splitting schemes [11,12] . These con- 

itions emerge as the Damköhler number (Da) decreases towards 

nity [13] . Da is defined as the ratio of the mixing time scale ( τmix )

nd the chemistry time scale ( τchem 

): 

a = 

τmix 

τchem 

(1) 

The mixing time scale is easily defined by turbulence parame- 

ers for reacting flows or by the residence time for Perfectly Stirred 

eactors (PSR). On the contrary, defining the chemistry time scale 

s more complex [14] . Modern combustion technologies like MILD 

r (ultra-)lean combustion feature significant regions near limit 

tates [1–3] . Therefore, it is crucial to employ operator splitting 

chemes that can to correctly predict such conditions. 

Besides using operator splitting for combustion CFD, it can 

lso be used to speed-up perfectly stirred reactor (PSR) calcula- 

ions, e.g., for the fine structure closure of the Eddy Dissipation 

oncept (EDC) [15,16] or 0D/1D flame codes like Cantera [17] or 

HEMKIN [18] . 

A generic reaction-diffusion problem is introduced, and the rel- 

vant relations for the subsequent analysis of operator splitting 

chemes are derived ( Section 2 ). Steady-state behavior and tempo- 

al accuracy of commonly used operator splitting schemes are eval- 

ated using a linear problem ( Section 3 ). New steady-state preserv- 

ng operator splitting schemes are proposed based on the evalua- 

ion of the existing ones ( Section 4 ). Furthermore, scalar linear sta- 

ility analysis is employed to evaluate the splitting schemes’ sta- 

ility properties ( Section 5 ). Subsequently, the theoretical findings 

re verified using a scalar ( Section 6 ) and a combustion ( Section 7 )

est case, which are known to cause troubles for the Strang split- 

ing scheme [11,12] . 
2 
. Theory 

Operator splitting schemes are widely used in CFD of reactive 

ows. The aim of splitting schemes is an accurate solution to the 

riginal problem with the least possible effort. Reaction-diffusion(- 

dvection) reaction equations are split into: i) the diffusion- 

dvection and ii) the reaction part to avoid the solution of the fully 

oupled problem. Linear matrix solvers can handle the convective- 

iffusion part, while special non-linear solvers are used to solve 

he strongly coupled stiff chemical sub-system. The operator split- 

ing scheme combines the sub-systems’ solutions to retain the 

riginal system’s solution. The reaction-diffusion equation of a per- 

ectly stirred reactor (PSR) is given by Wu et al. [19] : 

d �

dt 
= 

1 

τres 
( �∞ 

− �) + ˙ ω ( �) (2) 

here � = { Y , h } is the state vector consisting of the species mass 

ractions and the enthalpy, τres is the residence time, �∞ 

is the 

nflow state vector, and ˙ ω ( �) is the non-linear chemistry term. 

The problem can be split into a mixing ( T ) and chemical ( R )

ub-problem: 

d �

dt 
= T + R (3) 

The mixing operator is typically non-stiff, while the chemistry 

perator can become stiff. 

Speth et al. [20] introduced balancing constants ( C N ) to mod- 

fy the stability and steady-state properties of the Strang spit- 

ing schemes without changing the original problem. The balancing 

onstants change the initial problem to: 

d�

dt 
= T 

′ + R 

′ = ( T + C N ) + ( R − C N ) 

= ( A � + a + C N ) + ( B � + b − C N ) (4) 

Adding balancing constants modifies the solution of the sub- 

roblems while not affecting the solution of the initial problem. 

The relation for the time integration can be generalized based 

n a recurrence relation or growth factor ( R ) and the constant part 

r matrix factor ( Q ), which is given by Wu et al. [19] , Speth et al.

20] : 

n +1 = R �n + Q (5) 

The analytical ( �(t) ) solution of Eq. (4) for C N = 0 can be easily

ound [20] : 

(t) = �∞ 

+ exp ( ( A + B ) · t ) · ( �0 − �∞ 

) (6) 

The steady-state solution ( �∞ 

) can be found by setting �n +1 = 

n = �∞ 

and rearranging Eq. (5) and solving it for h → ∞ : 

∞ 

= Q ( I − R ) 
−1 (7) 

The analytic solution for the steady-state is then given by: 

∞ 

= −( a + b ) ( A + B ) 
−1 (8) 

The Maclaurin series (Taylor expansion around zero) of 

q. (7) can be used to identify the steady-state error of operator 

plitting schemes [20] . Taking the limit h → ∞ of Eq. (7) iden-

ifies the tendency of the steady-state solution towards one of 

he sub-problems or a combination of them. Combining both ap- 

roaches reveals if an operator splitting scheme is steady-state pre- 

erving and, in addition, gives the dominant sub-problem if it is 

ot steady-state preserving. 

The general analytical solutions of the sub-problems are given 

y: 
 τ

T 

′ (t) dt = e A τ + 

(
e A τ − 1 

)
A 

−1 · ( a + C N ) (9a) 
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 τ

0 

R 

′ (t) dt = e B τ + 

(
e B τ − 1 

)
B 

−1 · ( b − C N ) (9b) 

Speth et al. [20] introduced the following entities: 

 

A τ := α# , e B τ := β (10a) 

 

∗
# := 

(
e A τ − I 

)
A 

−1 
, B 

∗ := 

(
e B τ − I 

)
B 

−1 (10b) 

here τ is replaced with the corresponding time step sizes of the 

plitting scheme and # is a wild card, which is blank for τ = h and

/ 2 for τ = h/ 2 . Using these identities yields simpler expressions 

or the analytic solutions of Eq. (9) : 
 τ

0 

T 

′ (t) dt = α�n + A 

∗
( a + C N ) (11a) 

 τ

0 

R 

′ (t) dt = β�n + B 

∗( b − C N ) (11b) 

These solutions are also valid if no balancing constant is used 

 C N = 0 ). 

Operating spitting schemes must conserve the steady-state so- 

ution and be as accurate in time as possible. Various first and 

econd-order accurate splitting schemes have been presented in 

he literature. The analyzed operator splitting schemes’ temporal 

ccuracy is evaluated based on the Maclaurin series of the growth 

actor. The series expansion of the growth factor of the reaction- 

iffusion problem is given by: 

 (h ) = e ( A + B ) h = 

∞ ∑ 

n =0 

( A + B ) n h 

n 

n ! 
≈ 1 + ( A + B ) h 

+ 

(
A 

2 + AB + BA + B 

2 
)
h 

2 

2 

+ 

(
A 

3 + A 

2 B + ABA + AB 

2 + BA 

2 + BAB + B 

3 
)
h 

3 

6 

+ O 

(
h 

4 
)

(12) 

The temporal accuracy of operator splitting schemes can be di- 

ided into two different cases: i) the local accuracy, which is equal 

o the leading order error of the Maclaurin series expansion, and 

i) the global accuracy, which is one order lower than the error of 

he Maclaurin series because of the O ( 1 /h ) time steps required to 

olve the problem [20] . 

The stability of operator splitting schemes is typically evaluated 

y scalar linear stability analysis for simplicity [19,20] . In the scalar 

ase, Eq. (4) simplifies to: 

d�

dt 
= T + R = ( Aφ + a + C N ) + ( Bφ + b − C N ) (13) 

Using the scalar variants of the identities from Eq. (10) gives 

he following solutions to the linearized scalar sub-problems: 
 τ

0 

T ′ (t) dt = α�n + A 

∗( a + C N ) (14a) 

 τ

0 

R 

′ (t) dt = β�n + B 

∗( b − C N ) (14b) 

The accuracy and steady-state properties of common and newly 

roposed splitting schemes are discussed in Sections 3 and 4 , 

hile their stability properties are discussed in Section 5 . 

. Review of selected operator splitting schemes 

The presented operator splitting schemes have been used for 

eaction-diffusion problems [19–24] . The general calculation pro- 

edure, the steady-state solution, and the accuracy of the splitting 

chemes are subsequently discussed similar to the work of Speth 

t al. [20] and Wu et al. [19] . 
3 
.1. Strang splitting 

The Strang splitting scheme has been proposed in the 

960s [21] and is a second-order accurate splitting scheme. Strang 

plitting embeds a full time step of the chemical sub-problem be- 

ween two half time steps of the mixing sub-problem: 

 t �
(1) = T ( �(1) ) , �(1) (t n ) = �n (15a) 

 t �
(2) = R ( �(2) ) , �(2) (t n ) = �(1) (t n + h/ 2) (15b) 

 t �
(3) = T ( �(3) ) , �(3) (t n + h/ 2) = �(2) (t n + h ) (15c) 

n +1 = �(3) (t n + h/ 2) (15d) 

Integrating Eq. (15) over a single time step gives the following 

xpressions for the growth and matrix factors: 

 = αh/ 2 βαh/ 2 (16a) 

 = 

(
αh/ 2 β + I 

)
A 

∗a + αh/ 2 B 

∗b (16b) 

The Maclaurin series of the growth factor, which defines the 

cheme’s accuracy, is given by Speth et al. [20] : 

 (h ) = αh/ 2 βαh/ 2 = I + ( A + B ) h 

+ 

(
A 

2 + AB + BA + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(17) 

hich confirms second-order accuracy for O ( 1 /h ) time steps 

globally) or third order accuracy locally. 

The series expansion of Eq. (7) reveals time step size depen- 

ence of the steady-state solution, which is of second order for 

trang splitting: 

∞ 

= −( a + b ) ( A + B ) 
−1 

+ ( A + 2 B ) ( Aa − Bb ) ( A + B ) 
−1 h 

2 

24 

+ O 

(
h 

4 
)

(18) 

Using the limit h → ∞ of Eq. (7) shows that the steady-state so- 

ution of Strang splitting tends towards the solution of the mixing 

ub-problem: 

∞ 

= −a A 

−1 (19) 

.2. Balanced splitting 

Balanced splitting [20] is identical to Strang splitting except for 

he balancing constant, which is defined as C N = 

1 
2 · ( R − T ) : 

 t �
(1) = T ( �(1) ) + C N , �(1) (t n ) = �n (20a) 

 t �
(2) = R ( �(2) ) − C N , �(2) (t n ) = �(1) (t n + h/ 2) (20b) 

 t �
(3) = T ( �(3) ) + C N , �(3) (t n + h/ 2) = �(2) (t n + h ) (20c) 

n +1 = �(3) (t n + h/ 2) (20d) 

Integrating Eq. (20) over a single time step gives the following 

rowth and matrix factor: 

 = αh/ 2 βαh/ 2 + 

1 

2 

(
αh/ 2 B 

∗ −
(
αh/ 2 β + I 

)
A 

∗)
( A − B ) (21a) 

 = 

1 

(
αh/ 2 B 

∗ + 

(
αh/ 2 β + I 

)
A 

∗)
( a + b ) (21b) 
2 
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The global and local accuracy remain second and third order, 

espectively: 

 (h ) = αh/ 2 βαh/ 2 + 

1 

2 

(
αh/ 2 B 

∗ −
(
αh/ 2 β + I 

)
A 

∗)
( A − B ) 

= I + ( A + B ) h + 

(
A 

2 + AB + BA + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(22) 

However, the balancing constant removes the time step depen- 

ence of the steady-state solution (see Eq. (8) ). 

.3. Simpler splitting 

Wu et al. [19] proposed the Simpler splitting scheme based on 

he balanced splitting scheme of Speth et al. [20] . The balancing 

onstant for Simpler splitting is only based on the mixing step. 

s a result, the first mixing sub-step is in equilibrium, and can 

e skipped to reduce numerical effort. Eq. (23) summarizes the 

impler splitting scheme. 

 N = −T ( �) (23a) 

 t �
(1) = R ( �(1) ) − C N , �(1) (t n ) = �n (23b) 

 t �
(2) = T ( �(2) ) + C N 

, �(2) (t n + h/ 2) = �(1) (t n + h ) (23c) 

n +1 = �(2) (t n + h ) (23d) 

The growth and matrix factors for the Simpler splitting scheme 

re given by: 

 = αh/ 2 βαh/ 2 + 

(
αh/ 2 B 

∗ −
(
αh/ 2 β + I 

)
A 

∗)A (24a) 

 = αh/ 2 B 

∗( a + b ) (24b) 

The accuracy of the Simpler splitting is similar to the Balanced 

plitting; second-order globally and third order locally. The series 

xpansion of the growth factor is given by: 

 (h ) = αh/ 2 βαh/ 2 + 

(
αh/ 2 B 

∗ −
(
αh/ 2 β + I 

)
A 

∗)A 

= I + ( A + B ) h + 

(
A 

2 + AB + BA + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(25) 

Furthermore, the steady-state solution is independent of the 

ime step size and resembles Eq. (8) . 

.4. Staggered splitting 

The Staggered splitting scheme was proposed by Ren and Pope 

22] and, similar to Simpler splitting, aims to reduce the num- 

er of function evaluations. The scheme consists of two sub-steps, 

hich are averaged to obtain the solution of the time integra- 

ion. Figure 1 illustrates the sub-step arrangement of the Staggered 

plitting scheme. The solution of the last mixing time step is used 

s starting point for the initial chemistry step, which is the basis 

or the mixing step. Time shifts are done to create an overlap be- 

ween the chemistry and mixing steps. Eq. (26) gives the formula 

or the Staggered splitting scheme. 

 t �
(1) = R ( �(1) ) , �(1) (t n ) = �t n + h/ 2 (26a) 

 t �
(2) = T ( �(2) ) , �(2) (t n + h/ 2) = �(1) (t n + h ) (26b) 
4 
n +1 = 

�(1) (t n + h ) + �(2) (t n + 3 / 2 h ) 

2 

(26c) 

A half mixing sub-step is required at the beginning of the in- 

egration since Staggered splitting relies on h/ 2 shifted points for 

he integration [22] : 

 t �
(1) = T ( �(1) ) , �(1) (t n ) = �n (27a) 

n +1 / 2 = �(1) (t n + h/ 2) (27b) 

In the concept of Staggered splitting, any time step starts with 

alf of a mixing step. The subsequent chemistry and mixing steps 

re then averaged to obtain the time step solution. Therefore, the 

nitial state ( �n +1 / 2 ) is replaced by a half mixing step: αh/ 2 + 

 

∗
h/ 2 a . The growth and matrix factor for the representative inte- 

ration step are given by: 

 = 

1 

2 

[
αβαh/ 2 + βαh/ 2 

]
(28a) 

 = 

1 

2 

[
α
(
βA 

∗
h/ 2 a + B 

∗b 

)
+ βA 

∗
a + A 

∗a + B 

∗b 

]
(28b) 

Numerical tests suggested that Staggered splitting is second- 

rder accurate [22] . The series expansion of the growth factor 

iven in Eq. (29) contradicts this observation. Staggered splitting 

s only second-order accurate locally since there is an error of 

1 / 8 A 

2 − AB / 4) h 2 in the second-order expansion: 

 (h ) = αβαh/ 2 + βαh/ 2 

= I + ( A + B ) h + 

(
5 

4 

A 

2 + 

AB 

2 

+ BA + B 

2 

)
h 

2 

2 

+ O 

(
h 

3 
)

(29) 

The minor error in the growth factor can resemble second-order 

ehavior, although Staggered splitting is not second-order accurate. 

Moreover, the splitting scheme is not steady-state preserving 

nd has a zeroth-order dependence of the steady-state solution on 

he time step size: 

∞ 

= −
(

5 

4 

a + b 

)
( A + B ) 

−1 + O ( h ) (30) 

The limit h → ∞ of Eq. (7) for Staggered splitting resembles a 

inear combination of the sub-problem solutions: 

∞ 

= −1 

2 

a A 

−1 − 1 

2 

b B 

−1 (31) 
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.5. Lie–Trotter 

The Lie–Trotter scheme solves the chemical sub-step based on 

he previous solution of the mixing sub-step [23] : 

 t �
(1) = T ( �(1) ) , �(1) (t n ) = �n (32a) 

 t �
(2) = R ( �(2) ) , �(2) (t n ) = �(1) (t n + h ) (32b) 

n +1 = �(2) (t n + h ) (32c) 

The growth and matrix factor of the Lie–Trotter splitting are 

iven by: 

 = βα (33a) 

 = βA 

∗
a + B 

∗b (33b) 

Eq. (34) shows that Lie–Trotter splitting is first-order accurate 

lobally and second-order accurate locally: 

 (h ) = βα

= I + ( A + B ) h + 

(
A 

2 + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(34) 

The series expansion of Eq. (7) for Lie–Trotter splitting indicates 

 first-order dependence of the steady-state solution on the time 

tep size: 

∞ 

= −( a + b ) ( A + B ) 
−1 + ( Ab − Ba ) ( a + b ) 

−1 h 

2 

+ O 

(
h 

2 
)

(35) 

The limit h → ∞ of Eq. (7) for the Lie–Trotter splitting tends 

owards the solution of the chemical sub-problem: 

∞ 

= −b B 

−1 (36) 

.6. Adaptive splitting 

The Adaptive splitting [24,25] uses a different approach than 

he previous schemes. The splitting scheme integrates both sub- 

roblems independently and subsequently sums both solutions. 

he solution for the new time step is obtained by subtracting the 

nitial value from this sum: 

 t �
(1) = T ( �(1) ) , �(1) (t n ) = �n (37a) 

 t �
(2) = R ( �(2) ) , �(2) (t n ) = �n (37b) 

n +1 = �(1) (t n + h ) + �(2) (t n + h ) − �n (37c) 

The growth and matrix factor of the Adaptive splitting are given 

y: 

 = α + β − I (38a) 

 = A 

∗a + B 

∗b (38b) 

Similar to Lie–Trotter, the local and global accuracies of the 

daptive splitting are second and first-order, respectively: 

 (h ) = α + β − I 

= I + ( A + B ) h + 

(
A 

2 + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(39) 
5 
The series expansion of Eq. (7) for Adaptive splitting indicates 

rst-order dependence of the steady-state solution on the time 

tep size: 

∞ 

=−( a + b ) ( A + B ) 
−1 − ( A − B ) ( Ab − Ba ) ( A + B ) 

−2 h 

2 

+ O 

(
h 

2 
)

(40) 

The limit h → ∞ of Eq. (7) for Adaptive splitting is, similar to 

taggered splitting, a linear combination of the sub-system solu- 

ions: 

∞ 

= −1 

2 

a A 

−1 − 1 

2 

b B 

−1 (41) 

. New steady-state preserving operator splitting schemes 

Steady-state preserving versions of the Staggered ( Section 3.4 ), 

daptive ( Section 3.6 ), and Lie–Trotter ( Section 3.5 ) splitting 

cheme are derived in this section. The procedure to obtain steady- 

tate preservation is based on balancing constants similar to Speth 

t al. [20] who proposed Balanced splitting ( Section 3.2 ), a steady- 

tate preserving version of Strang splitting ( Section 3.1 ). 

The balancing constants were chosen based on i) the initial 

esults of preliminary investigations and ii) the tendency of the 

teady-state solution ( Eq. (30) , Eq. (41) , and Eq. (36) ) of the cor-

esponding non-conservative splitting schemes. The mixing deriva- 

ive was chosen as a balancing constant when the preliminary 

ests indicated a dominance of the chemical sub-problem, e.g., 

arly ignition or failed extinction. In case of inconclusive results 

f the preliminary tests (e.g., Strang and Lie–Trotter scheme), the 

endency of the steady-state solution was also considered in the 

hoice of the balancing constant. Preliminary investigations re- 

ealed that balancing constants based on the derivative of the 

teady-state solution’s tendency give steady-state preserving split- 

ing schemes. 

.1. Consistent staggered splitting 

Introducing a balancing constant to Staggered splitting 

 Eq. (26) ) alters the steady-state solution and ensures consis- 

ency. The initial mixing derivative proved to be a suitable choice 

or the balancing constant: 

 N = −T (42a) 

 t �
(1) = R ( �(1) ) − C N , �(1) (t n ) = �n +1 / 2 (42b) 

 t �
(2) = T ( �(2) ) + C N , �(2) (t n + h/ 2) = �(1) (t n + h ) (42c) 

n +1 = 

�(1) (t n + h ) + �(2) (t n + 3 / 2 h ) 

2 

(42d) 

Introducing the balancing constant makes the first step’s spe- 

ial treatment redundant since it is in equilibrium anyway. Similar 

o the original Staggered splitting scheme ( Section 3.4 ), the repre- 

entative time step starting with a half mixing step is used for the 

ubsequent analysis. The growth and matrix factors for the steady- 

tate preserving splitting scheme are given by: 

 = 

1 

2 

[
αβ − α + β + I + ( α + I ) B 

∗A 

]
(43a) 

 = 

1 

2 

[ ( αA + I ) B 

∗( a + b ) ] (43b) 
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The global and local accuracy orders remain almost unaffected 

espite modifying the steady-state solution and the numerical al- 

orithm. Similar to the original Staggered splitting, Consistent Stag- 

ered splitting misses a term for second-order accuracy ( A 

2 ): 

 (h ) = 

1 

2 

[
αβ − α + β + I + ( α + I ) B 

∗A 

]

= I + ( A + B ) h + 

(
AB + BA + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(44) 

.2. Consistent Lie–Trotter splitting 

Consistent Lie–Trotter splitting ( Eq. (32) ) can be achieved by in- 

roducing a balancing constant based on the chemical sub-system: 

The splitting scheme, thus, changes to: 

 N = R (45a) 

 t �
(1) = T ( �(1) ) + C N , �(1) (t n ) = �n (45b) 

 t �
(2) = R ( �(2) ) − C N , �(2) (t n ) = �(1) (t n + h ) (45c) 

n +1 = �(2) (t n + h ) (45d) 

The growth and matrix factors of Consistent Lie–Trotter split- 

ing are given by: 

 = βα − β + I + βA 

∗
B (46a) 

 = βA 

∗
( a + b ) (46b) 

As a result of adding the splitting constant, the steady-state is 

reserved, while the global and local accuracy orders remain vir- 

ually unchanged: 

 (h ) = βα − β + I + βA 

∗
B 

= I + ( A + B ) h + 

(
A 

2 + AB + 2 BA + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(47) 

.3. Consistent adaptive splitting 

Adaptive splitting requires a balancing constant based on the 

ixing derivative to ensure steady-state consistency. The modified 

cheme is given by: 

 N = −T (48a) 

 t �
(1) = T ( �(1) ) + C N , �(1) (t n ) = �n (48b) 

 t �
(2) = R ( �(2) ) − C N , �(2) (t n ) = �n (48c) 

n +1 = �(1) (t n + h ) + �(2) (t n + h ) − �n (48d) 

The growth and matrix factors of Consistent Adaptive splitting 

re given by: 

 = α + β − I + 

(
B 

∗ − A 

∗)A (49a) 

 = B 

∗( a + b ) (49b) 
a

6 
The global and local accuracy orders are slightly affected by 

he splitting constants but are still first-order globally and second- 

rder locally accurate: 

 (h ) = α + β − I + 

(
B 

∗ − A 

∗)A 

= I + ( A + B ) h + 

(
BA + B 

2 
)h 

2 

2 

+ O 

(
h 

3 
)

(50) 

. Stability analysis 

Stability is a critical issue of splitting schemes for reaction- 

iffusion(-advection) processes. The nature of chemistry leads to 

nbalanced characteristics between the sub-processes and can re- 

uire minuscule time step sizes. This partial decoupling of mixing 

nd chemistry poses a challenging problem for operator splitting 

chemes. Speth et al. [20] and Wu et al. [19] defined three differ- 

nt limiting cases for reaction-diffusion(-advection) systems for the 

inear scalar stability analysis: 

i) large time step limit: 

lim 

h →∞ 

R 

∣∣∣
A,B 

ii) chemistry becomes dominant over mixing at constant time 

step size: 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

iii) chemical rates increase while the time step decreases (keep 

| B | h = const.): 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

These limiting cases can be evaluated based on the recurrence 

xpressions of the splitting schemes. The stability properties of 

he different splitting schemes are given and discussed below. The 

erm well-posed is subsequently used for stable matrices, e.g., ma- 

rices having eigenvalues with negative real parts and negative val- 

es for the scalar case. 

.1. Strang splitting 

Considering the three cases, Strang splitting’s stability is uncon- 

itional for large time steps and stiff chemistry operators. Stability 

or reducing time steps at increasing stiffness is a function of β: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= 0 (51a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 0 (51b) 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (51c) 

The limit implies that Strang splitting is stable for any problem 

s long as the chemistry sub-problem is well-posed. 
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.2. Balanced splitting 

Wu et al. [19] investigated the stability of Balanced splitting and 

rrived at the following relations: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= 

1 

2 

(
1 − A 

−1 B 

)
(52a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 

1 

2 

(
1 − ( α − 1 ) A 

−1 B 

)
= ∞ (52b) 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

= 

1 

4 

( 1 + β) ( 2 + Bh ) (52c) 

These relations indicate that Balanced splitting is unstable for 

arge step sizes if | B | > 3 | A | and if the chemistry operator becomes

tiff while keeping the step size constant. In case step size is re- 

uced, Balanced splitting is stable for any B < 0 only if | B | h < 5 . 99 .

.3. Simpler splitting 

Similar to Balanced splitting, the stability of Simpler splitting 

as already assessed by Wu et al. [19] : 

lim 

h →∞ 

R 

∣∣∣
A,B 

= 1 (53a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 1 − α2 (53b) 

lim 

| B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (53c) 

Changing the balancing constant compared to Balanced split- 

ing significantly improved the splitting scheme. Simpler splitting 

s stable for all h > 0 as long as both sub-problems are well-posed.

.4. Staggered splitting 

Staggered splitting features the same stability properties as 

trang splitting: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= 0 (54a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 0 (54b) 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (54c) 

The splitting scheme is stable for all h > 0 provided the chem- 

stry operator is well-posed. 

.5. Lie–Trotter splitting 

Lie–Trotter stability analysis also revealed similar properties as 

trang and Staggered splitting: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= 0 (55a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 0 (55b) 

lim 

| B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (55c) 
7 
.6. Adaptive splitting 

Adaptive splitting stability is different. It depends on the stiff- 

ess of the mixing and chemistry operator: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= −1 (56a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= α − 1 (56b) 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (56c) 

Negligible damping occurs for large time steps, while the split- 

ing scheme is stable for Ah < ln 2 if the chemistry operator be- 

omes stiff at constant time step size. If the time step size is re- 

uced, a well-posed chemistry operator ensures stability. 

.7. Consistent staggered splitting 

Contrary to Staggered splitting, Consistent Staggered Splitting 

as more rigorous stability requirements: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= −1 

2 

(
1 − AB 

−1 
)

(57a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 

1 

2 

( 1 − α) (57b) 

lim 

| B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (57c) 

Consistent Staggered splitting requires 3 A < B and A < 0 for 

arge time steps to be stable. If the chemistry operator becomes 

tiff, the mixing operator must be well-posed ( A < 0 ). In contrast,

he chemistry operator needs to be well-posed for shrinking time 

teps and increasing stiffness of the operator itself. 

.8. Consistent Lie–Trotter splitting 

The Consistent Lie–Trotter scheme has also worse stability com- 

ared to the original Lie–Trotter scheme: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= 1 (58a) 

lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 1 (58b) 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

= ∞ (58c) 

Negligible damping occurs for large time steps and high stiff- 

ess of the chemistry operator. However, Consistent Lie–Trotter is 

nstable for small time steps and high stiffness of the chemistry 

perator. 

.9. Consistent adaptive splitting 

Consistent Adaptive splitting requires | A | ≤ | B | for large time 

teps, while it is unconditionally stable if the chemistry operator 

ecomes stiff compared to the mixing one: 

lim 

h →∞ 

R 

∣∣∣
A,B 

= −AB 

−1 (59a) 
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Table 1 

Summary scalar test case settings [11,19] . 

T ad T a T in T 0 Da 

ignition 1.15 1.80 0.15 0.15 833.00 

extinction 1.15 1.80 1.15 1.00 15.89 
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Fig. 2. Comparison of operator splitting schemes and direct integration for the 

scalar ignition case for a Co number of 0.1. 
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lim | B |→∞ 

R 

∣∣∣∣
A,h 

= 0 (59b) 

lim | B |→∞ 

R 

∣∣∣∣
A, | B | h 

= β (59c) 

In case of decreasing time step size and stiff chemistry operator, 

onsistent Adaptive splitting is stable if the chemistry operator is 

ell-posed. 

Strang, Simpler, Staggered, Lie–Trotter, and Adaptive splitting 

re stable if the transport and chemistry sub-problems are well- 

osed. Additional requirements regarding the ratio of | A | and | B | 
ave to be satisfied for Consistent Staggered and Consistent Adap- 

ive splitting for large time steps. Consistent Lie–Trotter is unsta- 

le if the chemistry operator becomes stiff and the time step size 

s reduced. Balanced splitting is unstable if the chemistry operator 

ecomes stiff while the time step size stays constant and impose a 

imitation for the | B | h term in case the time step size is reduced. 

hese findings indicate that balancing constants impair the stabil- 

ty of splitting schemes. 

. Scalar test case 

The operator splitting schemes are tested with a scalar case 

quivalent of a dimensionless PSR. The case has also been used by 

u et al. [11] , Wu et al. [19] to test the accuracy and steady-state

onvergence of operating splitting schemes and is known to cause 

roblems for Strang splitting [11] . The scalar test case’s governing 

quation is given by Law [26] : 

dT 

dt 
= 

1 

Da 
( T in − T ) + ( T ad − T ) exp 

(
−T a 

T 

)
(60) 

here t, T , T in , T ad , and T a are time, temperature, inlet tempera-

ure, adiabatic reaction temperature, and the activation tempera- 

ure, which is equal to the activation energy over the ideal gas 

onstant ( E a / 	 ). 

An ignition and extinction problem is used to test the 

tability and accuracy of the splitting schemes discussed in 

ections 3 and 4 . The subsequent computations were carried out 

n python [27] using NumPy [28] and SciPy [29] . The settings for 

he different cases are given in Table 1 . Lu et al. [11] determined

hat the critical Da numbers for the ignition and extinction cases 

ere 832.84 and 15.90, respectively. 

The Courant number [30,31] for the test cases is defined as the 

atio between the residence time ( τres ) and the time step size ( h ).

or the presented scalar test case, this relation can also be ex- 

ressed using Da : 

o = 

h 

τres 
= 

h 

Da 
(61) 

The Co number limit is some numerical efficiency measure and 

alues above unity are usually prohibitive due to loss of informa- 

ion [30,31] . In general, schemes requiring low Co for stability need 

ore sub-steps to solve the problem than schemes allowing high 

o. However, the accuracy of the splitting schemes will increase 

ompared to the direct integration (DI) for lower Co numbers due 

o their temporal accuracy. 
8 
Balanced splitting was skipped in the subsequent investigations 

ecause it proved to be unstable for Co > 0.05 in the ignition case. 

his is might be caused by the required limitation of the mixture 

o chemical rate ratio [19] ( Eq. (52) ). 

Figures 2 and 3 show the solution of the ignition problem for 

he different splitting schemes and Co numbers of 0.1 and 0.5. 

n case of Co = 0.1, DI predicts the ignition after around 350 

imes Da time and a final normalized temperature of 1.144. Strang, 

taggered, Adaptive, and Consistent Lie–Trotter under-predict the 

teady-state temperature by up to 22%, while Lie–Trotter slightly 

ver-predicts the steady-state temperature (0.5%). Simpler, Consis- 

ent Staggered, and Consistent Adaptive splitting predict the same 

teady-state temperature as DI. The temporal evolution of the tem- 

erature is correctly captured by Simpler and Consistent Stag- 

ered splitting. All other splitting schemes predict an early igni- 

ion compared to DI. In case of Co = 0.5, under-prediction of the 

teady-state temperature worsens for Strang, Staggered, and Adap- 

ive splitting, while it improves for Consistent Lie–Trotter splitting. 

impler, Consistent Staggered, and Consistent Adaptive predict the 

orrect steady-state. All splitting schemes predict earlier ignition 

or the Co = 0.5 case compared to the Co = 0.1 case. 

Figures 4 and 5 compare the results of the extinction test case 

or the different splitting schemes with DI for Co numbers of 0.1 

nd 0.5. Staggered and Adaptive splitting fail to predict extinction. 

n the contrary, Strang, Lie–Trotter, Consistent Adaptive, and Con- 

istent Lie–Trotter predict earlier extinction than the DI case for 

he Co = 0.1 case. Similar to the ignition case, Simpler and Consis- 

ent Staggered splitting are the only schemes to correctly predict 

he temperature profile. The results for the Co = 0.5 case are in 

ine with the results of the ignition case and the Co = 0.1 extinc- 

ion case. Extinction is predicted earlier for all splitting schemes 
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Fig. 3. Comparison of operator splitting schemes and direct integration for the 

scalar ignition case for a Co number of 0.5. 

Fig. 4. Comparison of operator splitting schemes and direct integration for the 

scalar extinction case for a Co number of 0.1. 

Fig. 5. Comparison of operator splitting schemes and direct integration for the 

scalar extinction case for a Co number of 0.5. 
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9

ompared to the Co = 0.1 case, but Simpler and Consistent Stag- 

ered are closest to the DI solution. 

Figure 6 compares the relative steady-state error versus the Co 

umber for the scalar ignition and extinction case. The steady-state 

rror for the ignition case ( Fig. 6 (a)) is negligibly small for Sim-

ler, Consistent Staggered, and Consistent Adaptive. At the same 

ime, the time step size dependence is confirmed for Strang, Stag- 

ered, and Adaptive splitting. Lie–Trotter splitting over-predicts 

he steady-state temperature by 0.5% for all but the smallest in- 

estigated Co numbers. Consistent Lie–Trotter splitting also over- 

redicts the correct steady-state for large Co numbers. However, 

fter under-predicting the steady-state around Co = 0.1, it predicts 

he correct steady-state for smaller Co numbers. 

Figure 6 (b) compares the steady-state results of the scalar ex- 

inction case. In general, the correct steady-state is predicted by 

ll steady-state preserving schemes. Consistent Staggered and Con- 

istent Adaptive splitting become unstable for Co > 1, while Con- 

istent Lie–Trotter becomes unstable for Co > 2. All three schemes 

ive oscillating steady-states when becoming unstable due to not 

ulfilling stability criterion i) from Section 5 . Strang splitting under 

nd Lie–Trotter over-predicts the steady-state for high Co numbers, 

hile both approach the correct steady-state for small Co numbers. 

daptive splitting fails to predict extinction for Co > 0.0 0 01 and 

tarts to become unstable for Co > 0.5 due to the negligible damp- 

ng for large time step sizes. Staggered splitting gives the correct 

teady-state for Co < 0.001 and Co > 1 but fails to predict extinc- 

ion between them. 

Figure 7 shows the absolute ignition (a) and extinction (b) time 

rrors versus the Co number for the investigated splitting schemes. 

he Co > 2 cases are neglected due to stability issues of the 

chemes. The temporal accuracy shows similar characteristics for 

he different splitting schemes in both cases. Consistent Adaptive 

nd Consistent Lie–Trotter overlap in the diagrams and show first- 

rder accuracy over the investigated range. Staggered and Adap- 
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Fig. 6. Comparison of relative steady-state splitting error versus Co number for the 

scalar ignition (a) and extinction (b) cases. Unstable cases are not shown. 

Fig. 7. Comparison of relative ignition (a) and extinction (b) time error versus Co 

for the scalar test cases. Unstable cases are not shown. The lines indicate first (dot- 

ted) and second (dashed) order. Strang and Lie–Trotter as well as Consistent Adap- 

tive and Consistent Lie–Trotter overlap. 
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10 
ive splitting approach first-order accuracy for Co < 0.001 but 

how lower-order accuracy for higher Co numbers. The accuracy 

f the Adaptive splitting scheme remains unknown for the extinc- 

ion case because it predicted extinction only for one case. Strang 

nd Lie–Trotter splitting also overlap and show first-order accu- 

acy for Co > 0.1, while being second-order accurate for smaller 

o numbers. Simpler and Consistent Staggered show approximately 

econd-order accuracy. 

In general, the scalar test case results are in line with the the- 

retic observations from Sections 3 to 5 . Larger time steps de- 

rease the accuracy of the predicted temporal evolution and affect 

he steady-state results of the non-steady-state preserving splitting 

chemes. 

. Combustion test case 

The combustion test cases are H radical doped ignition and 

ear-limit extinction [11] . The ignition case is known to cause 

roblems for operating splitting schemes [12] . The governing equa- 

ions are given by: 

dY i 
dt 

= 

1 

τres 
( Y i,in − Y i ) + 

˙ ω i 

ρ
(62a) 

dh 

dt 
= 

1 

τres 

N s ∑ 

i =1 

Y i,in ( h i,in − h i ) + 

1 

ρ

N s ∑ 

i =1 

˙ ω i h i (62b) 

here Y , τres , ˙ ω , ρ , h , and N s are the species mass frac-

ion, residence time, species consumption/production rate, den- 

ity, enthalpy, and number of species. The hydrogen combustion 

echanism of Li et al. [32] was used for the thermodynamic 

roperties and chemistry rates. The computations were done in 

ython [27] using NumPy [28] , SciPy [29] , and the open-source 

ool Cantera [17] . 

The ignition case features a hydrogen/air mixture with an 

quivalence ratio ( φ) of 0.5 with a 0.1% mol 
mol 

H radical enrichment. 

he initial reactor state is equal to the equilibrium concentrations 

t constant temperature and pressure of the inlet stream. In con- 

rast, the initial reactor state is equal to the equilibrium at con- 

tant enthalpy and pressure of the inlet stream for the extinction 

ase. The inlet states of both cases are summarized in Table 2 . The

ritical residence time for the extinction case is 1.4211 × 10 -7 s, 

hile the ignition case is far from the critical residence time of 

.0710 × 10 -3 s and features H enrichment [11] . 

The Balanced splitting scheme has been disregarded for the in- 

estigations of the combustion test cases for the same reasons it 

as omitted in the scalar test cases: Balanced splitting proved to 

e unstable for Co > 0.05 for the investigated test cases. 

Figures 8 and 9 compare the temperature profiles of the ig- 

ition case of the different splitting schemes for Co numbers of 

.1 and 0.5. The results compare with the scalar ignition case of 

ection 6 . Simpler and Consistent Staggered splitting give similar 

esults as DI for a Co number of 0.1, while Consistent Adaptive 

plitting predicts the correct steady-state but early ignition. Strang, 

taggered, Lie–Trotter, and Adaptive splitting predict late ignition 

nd fail to predict the steady-state temperature. Strang, Staggered, 

nd Adaptive splitting under-predict the steady-state temperature, 

hile Lie–Trotter splitting over-predicts it. Contrary to the scalar 

gnition case, Consistent Lie–Trotter splitting fails to predict igni- 

ion. This might be related to the balancing constant based on 

he chemistry derivative. For a Co number of 0.5, all splitting 

chemes except Simpler, Consistent Staggered, Consistent Adaptive, 

nd Adaptive fail to predict the ignition process. Adaptive split- 

ing significantly under-predicts the steady-state temperature com- 

ared to DI, while the other splitting schemes reproduce the cor- 

ect steady-state. Adaptive splitting also predicts delayed ignition, 
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Table 2 

Summary combustion test case settings [11,12] . 

T in (K) p (atm) H 2 (kg/kg) H (kg/kg) N 2 (kg/kg) O 2 (kg/kg) τres (s) 

ignition 875 80 0.170 0.023 0.637 0.170 2.00 × 10 -6 

extinction 1000 20 0.296 – 0.556 0.148 1.42 × 10 -7 

Fig. 8. Comparison of operator splitting schemes and direct integration for the ig- 

nition case for a Co number of 0.1. 
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Fig. 9. Comparison of operator splitting schemes and direct integration for the ig- 
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hile the other schemes predict premature ignition. It is interest- 

ng to note that the solution of both Adaptive splitting schemes 

vershoot prior to reaching the steady-state. The same behavior 

as observed by Lu et al. [11] for the Balanced splitting. 

Figures 10 and 11 compare the temperature profiles of the ex- 

inction case of the different splitting schemes for Co numbers of 

.1 and 0.5. In general, the results are comparable to the scalar 

xtinction case. For a Co number of 0.1, Staggered and Adaptive 

plitting fail to predict extinction. Furthermore, Strang, Lie–Trotter, 

onsistent Lie–Trotter, and Consistent Adaptive under-predict the 

xtinction time, while Simple and Consistent Staggered match the 

I results. For a Co number of 0.5, besides Staggered and Adap- 

ive splitting, Consistent Lie–Trotter splitting fails to predict ex- 

inction. The remaining splitting schemes, Strang, Lie–Trotter, Con- 

istent Adaptive, Consistent Staggered, and Simpler, predict earlier 

xtinction onset than the Co = 0.1 case. 

Figure 12 compares the relative steady-state error versus the 

o number for the ignition and extinction case. In principle, the 

esults resemble the scalar test case for the ignition and extinc- 

ion case. Figure 12 (a) indicates that the steady-state preserving 

chemes predict the correct steady-states for the ignition case, 

hile the time step dependency is indicated for the other schemes. 

he stability limit of the splitting schemes is shifted towards lower 

o numbers compared to the scalar test cases. The investigated 

plitting schemes become unstable for Co > 2, except for Consis- 
11 
ent Adaptive splitting, which becomes unstable for Co > 0.5. The 

gnition cases reveal a significant accuracy increase for the non- 

reserving splitting schemes around Co = 0.4. All splitting schemes 

redict the correct steady-state for Co < 0.01. The Consistent Lie–

rotter results deviate from the scalar test cases because it sig- 

ificantly under-predicts the correct steady-state for Co > 0.01. 

igure 12 (b) compares the relative steady-state errors for the ex- 

inction case. Adaptive and Strang splitting fail to predict extinc- 

ion for 0.001 > Co < 2. In addition, Consistent Lie–Trotter fails 

o predict the correct steady-state for Co > 0.25, while Consistent 

daptive is unstable for Co > 1.5. 

Figure 13 investigates the temporal accuracy for the combustion 

gnition and extinction cases. The extinction case results are in line 

ith the scalar accuracy results. In contrast, the ignition case re- 

ults differ from their scalar counterpart, and all investigated split- 

ing schemes show similar orders of accuracy. The different accu- 

acies compared to the scalar case and the analytical results are 

aused by the nature of the ignition test case since it is particularly 

hallenging for splitting schemes [11] . The deviation of the ignition 

ase from the scalar and theoretical results indicates that the prob- 

em properties also affect the accuracy of splitting schemes. 

In general, the combustion case results are in line with the the- 

retical and scalar test case results. Consistent Lie–Trotter splitting 

s an exception because the linear scalar stability analysis suggests 

hat the scheme is steady-state conservative. One reason for the 
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Fig. 10. Comparison of operator splitting schemes and direct integration for the 

extinction case for a Co number of 0.1. 

Fig. 11. Comparison of operator splitting schemes and direct integration for the ex- 

tinction case for a Co number of 0.5. 

Fig. 12. Comparison of relative steady-state splitting error versus Co number for 

the ignition (a) and extinction (b) cases. Unstable cases are not shown. 

Fig. 13. Comparison of relative ignition (a) and extinction (b) time error versus Co 

for the combustion test cases. Unstable cases are not shown. The lines indicate first 

(dotted) and second (dashed) order. Strang and Lie–Trotter as well as Consistent 

Adaptive and Consistent Lie–Trotter overlap. 

12 
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ifferent characteristics could be caused by shortcomings of the 

inear analysis for the non-linear chemical sub-system. The differ- 

nces between the scalar test case and the combustion test case 

lso indicate that the non-linear matrix has additional effects on 

he operator splitting schemes compared to the non-linear scalar 

perator. Moreover, the ignition case reveals an accuracy depen- 

ence of operator splitting schemes on the problem properties. 

. Summary and conclusion 

Stability and steady-state preservation of operator splitting 

chemes for reaction-diffusion problems were examined. These in- 

estigations showed that Balanced and Simpler splitting preserve 

he correct steady-state solution independently of the time step 

ize. 

Three new steady-state preserving splitting schemes were pro- 

osed based on the initial evaluation of the existing splitting. The 

ew schemes are based on the Staggered, Lie–Trotter, and Adap- 

ive splitting schemes and feature suitable balancing constants to 

reserve the steady-state. 

All discussed schemes were also tested using test cases known 

o cause problems for operator splitting. The cases consist of igni- 

ion and extinction problems based on a dimensionless PSR case 

nd a hydrogen combustion case. The results confirmed steady- 

tate preservation of Simpler, Consistent Staggered, and Consistent 

daptive splitting, while the Consistent Lie–Trotter splitting failed 

o conserve the steady-state. The the balancing constant is the dif- 

erence between the Consistent Lie–Trotter and the other schemes. 

he former uses the chemical derivative as balancing constant, 

hile the others use the mixing derivative. Furthermore, the tem- 

oral and steady-state accuracies of the schemes were investigated 

or Co numbers between 0.0 0 01 and 10. In principle, the numeri- 

al result confirmed the theoretical ones, except for the hydrogen 

ombustion ignition case, where all schemes have similar accura- 

ies. This result indicates an influence of the problem properties 

n the actual splitting scheme order of accuracy. 

The scalar and combustion test cases showed that Simpler 

nd Consistent Staggered splitting should be used for transient 

ombustion simulations. Simpler splitting is second-order accu- 

ate, while Consistent Staggered splitting is first-order accurate but 

ives significantly better results than Consistent Adaptive splitting. 

onsistent Adaptive splitting can be used for steady-state solution 

lgorithms since it is only first-order accurate in time but also 

teady-state preserving. 

The differences between the linear scalar analysis and the nu- 

erical test cases indicate that the linear approximation incor- 

ectly captures the non-linear chemistry operator. In addition, the 

ifferences between the scalar and combustion test cases also in- 

icate that scalar analysis is insufficient to capture the non-linear 

hemistry operator. Future work should focus on non-linear stabil- 

ty analysis of operator splitting schemes to capture non-linear and 

atrix effects. 
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