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ABSTRACT

Reaction-diffusion(-advection) problems are well-known in chemical engineering and computational fluid
dynamics. A common feature of these systems is a linear (or non-stiff) transport sub-system and a non-
linear (or stiff), highly coupled chemistry sub-system. The expected numerical effort often prohibits a
fully coupled solution of the system. Therefore, the system is split into a transport and a reaction sub-
system, and each sub-system is solved using specialized solvers. Operator splitting schemes are required
to reconstruct the solution of the initial system from the sub-system solutions. Steady-state preserving
splitting schemes are particularly essential for steady-state calculations since local time stepping (LTS) or
other methods based on fictional time rely on large time steps to be efficient. This work formally analyzes
common splitting schemes for reaction-diffusion problems by stability analysis and checking the steady-
state preservation of a representative linear scalar problem. Balanced and Simpler Balanced splitting are
the only steady-state conservative schemes analyzed. Three new steady-state preserving splitting schemes
are proposed based on the findings of the formal analysis. To achieve steady-state preservation, the new
schemes use splitting constants based on either the mixing derivative or the chemistry derivative. The
formal analysis is accompanied by a dimensionless perfectly stirred reactor (PSR) case and a hydrogen
combustion case, both known to be challenging for operator splitting schemes. The test case results are in
line with the theoretical results but indicate that the scalar linear analysis is nonviable to capture the full
effects of the chemical sub-system. The Simpler and the newly proposed Consistent Staggered splitting
schemes give significantly better results than the remaining ones while being second-order and first-
order accurate, respectively. If temporal accuracy is irrelevant, e.g., for steady-state solvers, the proposed
Consistent Adaptive splitting scheme is promising since it preserves the steady-state solution first-order
time accurate with less function evaluations.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

increases the occurrence of near-extinction and near-ignition states
in flames. Another technology is (ultra-)lean combustion [2,3], also

Novel and modern combustion technologies aim to reduce pol-
lutant emissions and increase process efficiency. MILD combustion
is a promising technology that aims to reduce pollutants by dis-
tributing the flame over large regions compared to classical com-
bustion [1]. Spreading the reaction layer reduces combustion in-
tensity and final combustion temperatures and, thus, pollution for-
mation. Oxidizer dilution and thorough mixing of fuel, oxidizer,
and recirculated exhaust gas enable the reaction zone transforma-
tion compared to classical combustion. These process conditions
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referred to as cool flames, which aims to keep the combustion
temperature low by employing fuel-to-air ratios ¢ « 1, which re-
duces NOy emissions and increases combustion efficiency. Operat-
ing near or below the flammability limit facilitates near-extinction
and near-ignition states in (ultra-)lean flames. Capturing these ef-
fects is crucial for the reliable modeling of MILD and (ultra-)lean
flames and the advancement of novel combustion technologies
through Computational Fluid Dynamics (CFD) or other modeling
approaches.

CFD codes use operator splitting to reduce the numerical ef-
fort of combustion problems. The governing equations consist of a
transport (convection, diffusion) and a chemistry part. The trans-

0010-2180/© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)


https://doi.org/10.1016/j.combustflame.2023.112881
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2023.112881&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:markus.boesenhofer@tuwien.ac.at
http://www.tuwien.ac.at
http://www.k1-met.com
http://www.cfd.at
https://doi.org/10.1016/j.combustflame.2023.112881
http://creativecommons.org/licenses/by/4.0/

M. Bosenhofer

port problem can be solved segregated, while chemistry is a non-
linear, coupled problem. Solving the reaction-diffusion problem
fully coupled is challenging because of the numerical effort. Split-
ting the original problem into a transport and a chemistry prob-
lem and solving them independently enables the use of specialized
solvers for both equation types. The splitting, however, requires
special algorithms to combine the independent solutions to recon-
struct the original problem. These algorithms are called operator
splitting schemes. Splitting schemes should reproduce the original
problem accurately in time and preserve its steady-state character-
istics.

In mathematics, operator splitting is widely used to solve dif-
ferential equations. The fractional-step method is one example
used to solve multi-dimensional problems [4,5], e.g., the three-
dimensional Navier-Stokes equations. Operator splitting is used in
reactive flow problems to reduce the numerical effort since it en-
ables the following advantages or speed-up possibilities:

i) in-situ adaptive tabulation (ISAT) for chemistry [6,7]: ISAT is
a method to generate a chemistry lookup table on the fly
during simulations, which automatically adapts to the chem-
istry sub-problem [6,7].

reduction of memory consumption: Segregated solution of
the transport equations significantly reduces the peak mem-
ory consumption compared to solving them fully cou-
pled [8].

application of specialized solvers: The loosely-coupled trans-
port part and the highly-coupled chemistry part can be
solved using specialized solvers for the different sub-
problem types [9,10].

i

=

iii

=

The main disadvantage of operator splitting is the temporal and
steady-state errors introduced by dividing the problem into sub-
problems.

Near-ignition and near-extinction states have been shown to
be challenging for operator splitting schemes [11,12]. These con-
ditions emerge as the Damkoéhler number (Da) decreases towards
unity [13]. Da is defined as the ratio of the mixing time scale (7x)
and the chemistry time scale (Tpem):

Da = fmix. (1)
Tchem

The mixing time scale is easily defined by turbulence parame-
ters for reacting flows or by the residence time for Perfectly Stirred
Reactors (PSR). On the contrary, defining the chemistry time scale
is more complex [14]. Modern combustion technologies like MILD
or (ultra-)lean combustion feature significant regions near limit
states [1-3]. Therefore, it is crucial to employ operator splitting
schemes that can to correctly predict such conditions.

Besides using operator splitting for combustion CFD, it can
also be used to speed-up perfectly stirred reactor (PSR) calcula-
tions, e.g., for the fine structure closure of the Eddy Dissipation
Concept (EDC) [15,16] or OD/1D flame codes like Cantera [17] or
CHEMKIN [18].

A generic reaction-diffusion problem is introduced, and the rel-
evant relations for the subsequent analysis of operator splitting
schemes are derived (Section 2). Steady-state behavior and tempo-
ral accuracy of commonly used operator splitting schemes are eval-
uated using a linear problem (Section 3). New steady-state preserv-
ing operator splitting schemes are proposed based on the evalua-
tion of the existing ones (Section 4). Furthermore, scalar linear sta-
bility analysis is employed to evaluate the splitting schemes’ sta-
bility properties (Section 5). Subsequently, the theoretical findings
are verified using a scalar (Section 6) and a combustion (Section 7)
test case, which are known to cause troubles for the Strang split-
ting scheme [11,12].
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2. Theory

Operator splitting schemes are widely used in CFD of reactive
flows. The aim of splitting schemes is an accurate solution to the
original problem with the least possible effort. Reaction-diffusion(-
advection) reaction equations are split into: i) the diffusion-
advection and ii) the reaction part to avoid the solution of the fully
coupled problem. Linear matrix solvers can handle the convective-
diffusion part, while special non-linear solvers are used to solve
the strongly coupled stiff chemical sub-system. The operator split-
ting scheme combines the sub-systems’ solutions to retain the
original system’s solution. The reaction-diffusion equation of a per-
fectly stirred reactor (PSR) is given by Wu et al. [19]:
do 1 .
a ?es(‘l’oo—q’)'i‘w(‘l’) (2)
where ® = {Y, h} is the state vector consisting of the species mass
fractions and the enthalpy, s is the residence time, ®, is the
inflow state vector, and @ (®) is the non-linear chemistry term.

The problem can be split into a mixing (7°) and chemical (R)
sub-problem:

do
dr

The mixing operator is typically non-stiff, while the chemistry
operator can become stiff.

Speth et al. [20] introduced balancing constants (Cy) to mod-
ify the stability and steady-state properties of the Strang spit-
ting schemes without changing the original problem. The balancing
constants change the initial problem to:

i =T +R =(T+Cn)+ (R—-Cy)

dt
= (A®+a+Cy)+ (B®+b-Cy) (4)

Adding balancing constants modifies the solution of the sub-
problems while not affecting the solution of the initial problem.

The relation for the time integration can be generalized based
on a recurrence relation or growth factor (R) and the constant part
or matrix factor (Q), which is given by Wu et al. [19], Speth et al.
[20]:

q)n+l :R(Dn +Q (5)

The analytical (@ (t)) solution of Eq. (4) for Cy = 0 can be easily
found [20]:

P(t) =P +exXp((A+B)-t) - (Po— Po) (6)

The steady-state solution (@) can be found by setting ®,,1 =
®, = &, and rearranging Eq. (5) and solving it for h — oo:

—T+R (3)

o, =QUI-R)' (7)
The analytic solution for the steady-state is then given by:
®,=—(a+b)A+B)"' (8)

The Maclaurin series (Taylor expansion around zero) of
Eq. (7) can be used to identify the steady-state error of operator
splitting schemes [20]. Taking the limit h — oo of Eq. (7) iden-
tifies the tendency of the steady-state solution towards one of
the sub-problems or a combination of them. Combining both ap-
proaches reveals if an operator splitting scheme is steady-state pre-
serving and, in addition, gives the dominant sub-problem if it is
not steady-state preserving.

The general analytical solutions of the sub-problems are given
by:

/IT’(t)dt:eA’ + (e -1)A" (a+cy) (9a)
0
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T
f R/(6)dt = P + (B —1)B" - (b Cy) (9b)
0
Speth et al. [20] introduced the following entities:
N =y, 8T i=f (10a)
A= (" — DA, B :=(efT —I)B! (10b)

where t is replaced with the corresponding time step sizes of the
splitting scheme and # is a wild card, which is blank for T = h and
h/2 for T = h/2. Using these identities yields simpler expressions
for the analytic solutions of Eq. (9):

/IT’(t)dtzoc(I)n-i—A*(a-i—CN) (11a)
0

T
/ R/(t) dt = B®, + B (b — Cy) (11b)
0

These solutions are also valid if no balancing constant is used
(Cn =0).

Operating spitting schemes must conserve the steady-state so-
lution and be as accurate in time as possible. Various first and
second-order accurate splitting schemes have been presented in
the literature. The analyzed operator splitting schemes’ temporal
accuracy is evaluated based on the Maclaurin series of the growth
factor. The series expansion of the growth factor of the reaction-
diffusion problem is given by:

N npn
R(h) = e@A+B)h :E :M ~1+ (A+B)h
n=0 n!

(A® + AB + BA + B*)h?
2
. (A’ + A’B+ ABA + AB’ + BA’ + BAB + B*)h’
6
+0(h?) (12)

The temporal accuracy of operator splitting schemes can be di-
vided into two different cases: i) the local accuracy, which is equal
to the leading order error of the Maclaurin series expansion, and
ii) the global accuracy, which is one order lower than the error of
the Maclaurin series because of the O(1/h) time steps required to
solve the problem [20].

The stability of operator splitting schemes is typically evaluated
by scalar linear stability analysis for simplicity [19,20]. In the scalar
case, Eq. (4) simplifies to:
do
E:T+R=(A¢+a+CN)+(B¢>+b—CN) (13)

Using the scalar variants of the identities from Eq. (10) gives
the following solutions to the linearized scalar sub-problems:

/TT’(t)dt=a<I>n+A*(a+CN) (14a)
0

T
/ R(t)dt = BDy + B (b—Cx) (14b)
0
The accuracy and steady-state properties of common and newly
proposed splitting schemes are discussed in Sections 3 and 4,
while their stability properties are discussed in Section 5.

3. Review of selected operator splitting schemes

The presented operator splitting schemes have been used for
reaction-diffusion problems [19-24]. The general calculation pro-
cedure, the steady-state solution, and the accuracy of the splitting
schemes are subsequently discussed similar to the work of Speth
et al. [20] and Wu et al. [19].
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3.1. Strang splitting

The Strang splitting scheme has been proposed in the
1960s [21] and is a second-order accurate splitting scheme. Strang
splitting embeds a full time step of the chemical sub-problem be-
tween two half time steps of the mixing sub-problem:

doV =7@"), &V, =®, (15a)
di®? =R®?), &P (t,) =DV (t, +h/2) (15b)
d®® =T7(®?), & (t,+h/2) = ®?(t, +h) (15¢)
@1 =% (ta +h/2) (15d)

Integrating Eq. (15) over a single time step gives the following
expressions for the growth and matrix factors:

R= “h/zﬂ“h/z (16a)
Q = (apB+1)A*a + oy ,B'D (16b)

The Maclaurin series of the growth factor, which defines the
scheme’s accuracy, is given by Speth et al. [20]:

R(h) = a5 B0, = I+ (A+B)h
h2
2 2
+(A +AB+BA+B)7+O(h3) (17)

which confirms second-order accuracy for O(1/h) time steps
(globally) or third order accuracy locally.

The series expansion of Eq. (7) reveals time step size depen-
dence of the steady-state solution, which is of second order for
Strang splitting:

&, =—(a+b)A+B)"
2
+(A+28)(Aa—Bb)(A+B)‘1g—4 +o(n*) (18)

Using the limit h — oo of Eq. (7) shows that the steady-state so-
lution of Strang splitting tends towards the solution of the mixing
sub-problem:

&, =-aA’! (19)
3.2. Balanced splitting

Balanced splitting [20] is identical to Strang splitting except for
the balancing constant, which is defined as Cy = % “(R-T):

d:®V =T(@"V)+cy, V(L) = d, (20a)
d®? =R@®?)-cy, P (t,) =V (t, +h/2) (20b)
d®® =T(@®>)+cy. P (t,+h2) =P (t,+h)  (20c)
@1 =% (6, +h/2) (20d)

Integrating Eq. (20) over a single time step gives the following
growth and matrix factor:

1
R= (xh/zﬂdh/z + E(“h/ZB* — (ah/zﬂ + ’)A*)(A — B)

Q= %(och,zB* + (otn2B8 +1)A") (@ + b)

(21a)

(21b)
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The global and local accuracy remain second and third order,
respectively:

1
R(h) = oty 2Baty; + 5 (eth2B* — (ot 2B +T)A") (A - B)

=I+ A+B)h + (A2+AB+BA+Bz)hz—2
+0(h?) (22)

However, the balancing constant removes the time step depen-
dence of the steady-state solution (see Eq. (8)).

3.3. Simpler splitting

Wau et al. [19] proposed the Simpler splitting scheme based on
the balanced splitting scheme of Speth et al. [20]. The balancing
constant for Simpler splitting is only based on the mixing step.
As a result, the first mixing sub-step is in equilibrium, and can
be skipped to reduce numerical effort. Eq. (23) summarizes the
Simpler splitting scheme.

Cy=-T(®) (23a)
d®V =R@®V)-cy, ®V(t,) = @, (23b)
d®? =T(®?)+Cy, ®P(ty+h/2) =@Vt +h) (23¢)
@1 =% (6, +h) (23d)

The growth and matrix factors for the Simpler splitting scheme
are given by:

R = oty ety , + (at)2B" — (028 +1)AT)A (24a)

Q=a,,B" (a+b) (24b)

The accuracy of the Simpler splitting is similar to the Balanced
splitting; second-order globally and third order locally. The series
expansion of the growth factor is given by:

R(h) = a2 By, + (“h/ZB* - ("‘h/Zlg 'H)A*)A

2
=I+ (A+B)h +(A2+AB+BA+BZ)h7

+0(h?) (25)

Furthermore, the steady-state solution is independent of the
time step size and resembles Eq. (8).

3.4. Staggered splitting

The Staggered splitting scheme was proposed by Ren and Pope
[22] and, similar to Simpler splitting, aims to reduce the num-
ber of function evaluations. The scheme consists of two sub-steps,
which are averaged to obtain the solution of the time integra-
tion. Figure 1 illustrates the sub-step arrangement of the Staggered
splitting scheme. The solution of the last mixing time step is used
as starting point for the initial chemistry step, which is the basis
for the mixing step. Time shifts are done to create an overlap be-
tween the chemistry and mixing steps. Eq. (26) gives the formula
for the Staggered splitting scheme.

a2 =R@"). V(1) = ;10 (262)

d:@? = 7(@?), @@ (t,+h/2) = @V (ty + h) (26b)
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Fig. 1. Schematics of the Staggered operator splitting scheme [22]. 7 and R denote
a mixing and chemistry step, respectively.

& (t, +h) + &P (t, +3/2h)
2

A half mixing sub-step is required at the beginning of the in-
tegration since Staggered splitting relies on h/2 shifted points for
the integration [22]:

4" = T(@").

Q= (26¢)

@V () = @, (27a)

G120 = @t +h/2) (27b)

In the concept of Staggered splitting, any time step starts with
half of a mixing step. The subsequent chemistry and mixing steps
are then averaged to obtain the time step solution. Therefore, the
initial state (®,,1,2) is replaced by a half mixing step: e, +
Aj,a. The growth and matrix factor for the representative inte-
gration step are given by:

1
R= i[aﬂuh/z + Bty 5 | (28a)

Q= %[a(ﬂA;/za +B'b) + pA"a+A'a+ B'b] (28b)

Numerical tests suggested that Staggered splitting is second-
order accurate [22]. The series expansion of the growth factor
given in Eq. (29) contradicts this observation. Staggered splitting
is only second-order accurate locally since there is an error of
(1/8A% — AB/4)h? in the second-order expansion:

R(h) = 05.3"511/2 + ﬁ“h/z

2
=I+ A+B)h + (f;A2+A2"L;+BA+BZ)h2

+0(h) (29)

The minor error in the growth factor can resemble second-order
behavior, although Staggered splitting is not second-order accurate.

Moreover, the splitting scheme is not steady-state preserving
and has a zeroth-order dependence of the steady-state solution on
the time step size:

o, = —<ga+b)(A+B)’1 +0(h) (30)

The limit h — oo of Eq. (7) for Staggered splitting resembles a
linear combination of the sub-problem solutions:

o1 1,
®. = -5aA"' - SbB (31)
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3.5. Lie-Trotter

The Lie-Trotter scheme solves the chemical sub-step based on
the previous solution of the mixing sub-step [23]:

4o = T(‘b(])), <I>(1)(tn) =&, (32a)
d:®? =R(@®%), () = ¢V (ta+h) (32b)
@, = ‘I’(Z)(tn +h) (320)

The growth and matrix factor of the Lie-Trotter splitting are
given by:

R=Ba (33a)

Q=pA‘a+Bb (33b)

Eq. (34) shows that Lie-Trotter splitting is first-order accurate
globally and second-order accurate locally:

R(h) = Ba
h2
=1+ (A+B)h + (A> + B*) = + O(I?) (34)
2
The series expansion of Eq. (7) for Lie-Trotter splitting indicates
a first-order dependence of the steady-state solution on the time
step size:

®,=—(a+b)(A+B)"' + (Ab—Ba)(a + b)”g +0(h?)  (35)
The limit h — oo of Eq. (7) for the Lie-Trotter splitting tends
towards the solution of the chemical sub-problem:

&, =-bB! (36)

3.6. Adaptive splitting

The Adaptive splitting [24,25] uses a different approach than
the previous schemes. The splitting scheme integrates both sub-
problems independently and subsequently sums both solutions.
The solution for the new time step is obtained by subtracting the
initial value from this sum:

dtd)(l) _ T(q)(l)), (I)(U(tn) =, (37a)
2P =R(®?), ¥ (1) =9, (37)
@1 =2Vt +h) + P (6, + h) — @, (37¢)

The growth and matrix factor of the Adaptive splitting are given
by:
R=a+p-1 (38a)
Q=Aa+Bb (38b)

Similar to Lie-Trotter, the local and global accuracies of the
Adaptive splitting are second and first-order, respectively:

R(h) =a+B-1
=I+(A+B)h + (A2+BZ)%2 +0(h?) (39)
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The series expansion of Eq. (7) for Adaptive splitting indicates
first-order dependence of the steady-state solution on the time
step size:

®,.=—(a+b)(A+B)'— (A—B)(Ab—Ba)(A +B)’Zg +0(h?)
(40)

The limit h — oo of Eq. (7) for Adaptive splitting is, similar to
Staggered splitting, a linear combination of the sub-system solu-
tions:

R DO
®. = —aA"' - SbB (41)

4. New steady-state preserving operator splitting schemes

Steady-state preserving versions of the Staggered (Section 3.4),
Adaptive (Section 3.6), and Lie-Trotter (Section 3.5) splitting
scheme are derived in this section. The procedure to obtain steady-
state preservation is based on balancing constants similar to Speth
et al. [20] who proposed Balanced splitting (Section 3.2), a steady-
state preserving version of Strang splitting (Section 3.1).

The balancing constants were chosen based on i) the initial
results of preliminary investigations and ii) the tendency of the
steady-state solution (Eq. (30), Eq. (41), and Eq. (36)) of the cor-
responding non-conservative splitting schemes. The mixing deriva-
tive was chosen as a balancing constant when the preliminary
tests indicated a dominance of the chemical sub-problem, e.g.,
early ignition or failed extinction. In case of inconclusive results
of the preliminary tests (e.g., Strang and Lie-Trotter scheme), the
tendency of the steady-state solution was also considered in the
choice of the balancing constant. Preliminary investigations re-
vealed that balancing constants based on the derivative of the
steady-state solution’s tendency give steady-state preserving split-
ting schemes.

4.1. Consistent staggered splitting

Introducing a balancing constant to Staggered splitting
(Eq. (26)) alters the steady-state solution and ensures consis-
tency. The initial mixing derivative proved to be a suitable choice
for the balancing constant:

Cn=-T (42a)
d @V =R(@") —cy, DV (ty) = Py (42b)
d®? =T7(@%)+cn. P (ta+h/2) =@V (ta+h)  (420)
o - & (t, +h) + &P (t, + 3/2h) (424)

2

Introducing the balancing constant makes the first step’s spe-
cial treatment redundant since it is in equilibrium anyway. Similar
to the original Staggered splitting scheme (Section 3.4), the repre-
sentative time step starting with a half mixing step is used for the
subsequent analysis. The growth and matrix factors for the steady-
state preserving splitting scheme are given by:

R=%[aﬁ—a+ﬂ+l+(a+l)B*A] (43a)

Q= %[(otA+I)B*(a+b)] (43b)
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The global and local accuracy orders remain almost unaffected
despite modifying the steady-state solution and the numerical al-
gorithm. Similar to the original Staggered splitting, Consistent Stag-
gered splitting misses a term for second-order accuracy (A?):

R(h) = %[aﬂ—aJrﬂ—i—I—i—(oc—i—I)B*A]

2
=1+ (A+B)h +(AB+BA+BZ)%

+0(r) (44)
4.2. Consistent Lie-Trotter splitting
Consistent Lie-Trotter splitting (Eq. (32)) can be achieved by in-

troducing a balancing constant based on the chemical sub-system:
The splitting scheme, thus, changes to:

Cvn=TR (45a)
d®V =T(@")+cy, V(1) =, (45b)
d®® =R@®?)—cy, ®P(t;) =dV(t,+h) (45¢)
O, =P, +h) (45d)

The growth and matrix factors of Consistent Lie-Trotter split-
ting are given by:

R=Ba—-B+I1+BAB (46a)
Q=pA(a+h) (46b)

As a result of adding the splitting constant, the steady-state is
preserved, while the global and local accuracy orders remain vir-
tually unchanged:

R(h) = o — B+1+ BA'B
h2
=I+A+B)h + (A2+AB+ZBA+BZ)7

+0(r) (47)
4.3. Consistent adaptive splitting
Adaptive splitting requires a balancing constant based on the

mixing derivative to ensure steady-state consistency. The modified
scheme is given by:

Cn=-T (48a)
d®V =7(@V)+cy, V() = @, (48b)
d®?® =R®%Y)—cy. ®?@t,) = ®, (48¢)
&, =0Vt +h) +®P(t,+h) — &, (48d)

The growth and matrix factors of Consistent Adaptive splitting

are given by:
R=a+pB-1+ (B -A")A (49a)

Q=B'(a+b) (49b)
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The global and local accuracy orders are slightly affected by
the splitting constants but are still first-order globally and second-
order locally accurate:

Rh) =a+B-1+ (B —A")A
=1+ (A+B)h +(BA+Bz)hz—2
+0(h) (50)

5. Stability analysis

Stability is a critical issue of splitting schemes for reaction-
diffusion(-advection) processes. The nature of chemistry leads to
unbalanced characteristics between the sub-processes and can re-
quire minuscule time step sizes. This partial decoupling of mixing
and chemistry poses a challenging problem for operator splitting
schemes. Speth et al. [20] and Wu et al. [19] defined three differ-
ent limiting cases for reaction-diffusion(-advection) systems for the
linear scalar stability analysis:

i) large time step limit:

lim R

h—oo

A.B

ii) chemistry becomes dominant over mixing at constant time
step size:

lim R

|B]— o0

Ah

iii) chemical rates increase while the time step decreases (keep
|B|h = const.):

lim R

|B]— o0

A.|Blh

These limiting cases can be evaluated based on the recurrence
expressions of the splitting schemes. The stability properties of
the different splitting schemes are given and discussed below. The
term well-posed is subsequently used for stable matrices, e.g., ma-
trices having eigenvalues with negative real parts and negative val-
ues for the scalar case.

5.1. Strang splitting

Considering the three cases, Strang splitting’s stability is uncon-
ditional for large time steps and stiff chemistry operators. Stability
for reducing time steps at increasing stiffness is a function of 8:

limR| =0 (51a)
h—o0 A.B

lim R| =0 (51b)
|B|—o0 Ah

lim R| =8 (51¢)
|B|—o0 A,IBJh

The limit implies that Strang splitting is stable for any problem
as long as the chemistry sub-problem is well-posed.
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5.2. Balanced splitting

Wau et al. [19] investigated the stability of Balanced splitting and
arrived at the following relations:

. 1 _1
hlLrI;R s j(1 —A"'B) (52a)
1
lim R| ==(1-(x—-1A"'B) = 52b
|B|—o00 Ah 2( ( ) ) o ( )
lim R = %(1 + B)(2 + Bh) (52¢)
|B|—o00 A Bl

These relations indicate that Balanced splitting is unstable for
large step sizes if |B| > 3|A| and if the chemistry operator becomes
stiff while keeping the step size constant. In case step size is re-
duced, Balanced splitting is stable for any B < 0 only if |Blh < 5.99.

5.3. Simpler splitting

Similar to Balanced splitting, the stability of Simpler splitting
was already assessed by Wu et al. [19]:

lim R =1 (53a)
h—o0 A.B

lim R| =1-0a? (53b)
|B|—>o0 Ah

lim R =B (530¢)
Bl=>co |4 g

Changing the balancing constant compared to Balanced split-
ting significantly improved the splitting scheme. Simpler splitting
is stable for all h > 0 as long as both sub-problems are well-posed.

5.4. Staggered splitting

Staggered splitting features the same stability properties as
Strang splitting:

limR| =o (54a)
h—o0 A.B

lim R| =0 (54b)
|B| >0 Ah

lim R| =8 (54c)
|B| >0 A Bl

The splitting scheme is stable for all h > 0 provided the chem-
istry operator is well-posed.

5.5. Lie-Trotter splitting

Lie-Trotter stability analysis also revealed similar properties as
Strang and Staggered splitting:

lim R =0 (55a)
h—oco 1AB

1m =

lim R 0 (55b)
|B|—>o0 Ah

lim R =8 (55¢)
|B|—> o0 ABIh
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5.6. Adaptive splitting

Adaptive splitting stability is different. It depends on the stiff-
ness of the mixing and chemistry operator:

lim R =-1 (56a)
h—oco |AB

lim R| —a—1 (56b)
|B|—>o0 Ah

lim R .y (56¢)
Bl>c0 |4 g

Negligible damping occurs for large time steps, while the split-
ting scheme is stable for Ah <In2 if the chemistry operator be-
comes stiff at constant time step size. If the time step size is re-
duced, a well-posed chemistry operator ensures stability.

5.7. Consistent staggered splitting

Contrary to Staggered splitting, Consistent Staggered Splitting
has more rigorous stability requirements:

1

; _ _ _ -1
ImR| =-3 (1-AB7) (57a)
. 1
lim R| ==-(1-0a) (57b)
|B|—>o0 Ah 2
lim R =B (57¢)
|B|—o0 A,|Blh

Consistent Staggered splitting requires 3A <B and A <0 for
large time steps to be stable. If the chemistry operator becomes
stiff, the mixing operator must be well-posed (A < 0). In contrast,
the chemistry operator needs to be well-posed for shrinking time
steps and increasing stiffness of the operator itself.

5.8. Consistent Lie-Trotter splitting

The Consistent Lie-Trotter scheme has also worse stability com-
pared to the original Lie-Trotter scheme:

lim R =1 (58a)
h—o0 A,B

lim R| =1 (58b)
|B|—o0 Ah

lim R =00 (58¢)
|B|—o0 A Bl

Negligible damping occurs for large time steps and high stiff-
ness of the chemistry operator. However, Consistent Lie-Trotter is
unstable for small time steps and high stiffness of the chemistry
operator.

5.9. Consistent adaptive splitting

Consistent Adaptive splitting requires |A| < |B| for large time
steps, while it is unconditionally stable if the chemistry operator
becomes stiff compared to the mixing one:

limR| =-AB!

59a
h—oo A.B ( )
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Table 1
Summary scalar test case settings [11,19].

Taa Ta Tin To Da

ignition 1.15 1.80 015 0.15 833.00
extinction  1.15 1.80 115 1.00 15.89

lim R| =0 (59b)
|B|—o00 Ah

lim R =8 (59¢)
|B|—>o0 A.IBJh

In case of decreasing time step size and stiff chemistry operator,
Consistent Adaptive splitting is stable if the chemistry operator is
well-posed.

Strang, Simpler, Staggered, Lie-Trotter, and Adaptive splitting
are stable if the transport and chemistry sub-problems are well-
posed. Additional requirements regarding the ratio of |A| and |B|
have to be satisfied for Consistent Staggered and Consistent Adap-
tive splitting for large time steps. Consistent Lie-Trotter is unsta-
ble if the chemistry operator becomes stiff and the time step size
is reduced. Balanced splitting is unstable if the chemistry operator
becomes stiff while the time step size stays constant and impose a
limitation for the |B|h term in case the time step size is reduced.
These findings indicate that balancing constants impair the stabil-
ity of splitting schemes.

6. Scalar test case

The operator splitting schemes are tested with a scalar case
equivalent of a dimensionless PSR. The case has also been used by
Lu et al. [11], Wu et al. [19] to test the accuracy and steady-state
convergence of operating splitting schemes and is known to cause
problems for Strang splitting [11]. The scalar test case’s governing
equation is given by Law [26]:

O = (T =T+ (T~ Tyexp (2 (60)

where ¢, T, T, T,q, and T, are time, temperature, inlet tempera-
ture, adiabatic reaction temperature, and the activation tempera-
ture, which is equal to the activation energy over the ideal gas
constant (E3/R).

An ignition and extinction problem is used to test the
stability and accuracy of the splitting schemes discussed in
Sections 3 and 4. The subsequent computations were carried out
in python [27] using NumPy [28] and SciPy [29]. The settings for
the different cases are given in Table 1. Lu et al. [11] determined
that the critical Da numbers for the ignition and extinction cases
were 832.84 and 15.90, respectively.

The Courant number [30,31] for the test cases is defined as the
ratio between the residence time (7,) and the time step size (h).
For the presented scalar test case, this relation can also be ex-
pressed using Da:

Co— h h

=7 =Da (61)

The Co number limit is some numerical efficiency measure and
values above unity are usually prohibitive due to loss of informa-
tion [30,31]. In general, schemes requiring low Co for stability need
more sub-steps to solve the problem than schemes allowing high
Co. However, the accuracy of the splitting schemes will increase
compared to the direct integration (DI) for lower Co numbers due
to their temporal accuracy.
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Fig. 2. Comparison of operator splitting schemes and direct integration for the
scalar ignition case for a Co number of 0.1.

Balanced splitting was skipped in the subsequent investigations
because it proved to be unstable for Co > 0.05 in the ignition case.
This is might be caused by the required limitation of the mixture
to chemical rate ratio [19] (Eq. (52)).

Figures 2 and 3 show the solution of the ignition problem for
the different splitting schemes and Co numbers of 0.1 and 0.5.
In case of Co = 0.1, DI predicts the ignition after around 350
times Da time and a final normalized temperature of 1.144. Strang,
Staggered, Adaptive, and Consistent Lie-Trotter under-predict the
steady-state temperature by up to 22%, while Lie-Trotter slightly
over-predicts the steady-state temperature (0.5%). Simpler, Consis-
tent Staggered, and Consistent Adaptive splitting predict the same
steady-state temperature as DI. The temporal evolution of the tem-
perature is correctly captured by Simpler and Consistent Stag-
gered splitting. All other splitting schemes predict an early igni-
tion compared to DI. In case of Co = 0.5, under-prediction of the
steady-state temperature worsens for Strang, Staggered, and Adap-
tive splitting, while it improves for Consistent Lie-Trotter splitting.
Simpler, Consistent Staggered, and Consistent Adaptive predict the
correct steady-state. All splitting schemes predict earlier ignition
for the Co = 0.5 case compared to the Co = 0.1 case.

Figures 4 and 5 compare the results of the extinction test case
for the different splitting schemes with DI for Co numbers of 0.1
and 0.5. Staggered and Adaptive splitting fail to predict extinction.
On the contrary, Strang, Lie-Trotter, Consistent Adaptive, and Con-
sistent Lie-Trotter predict earlier extinction than the DI case for
the Co = 0.1 case. Similar to the ignition case, Simpler and Consis-
tent Staggered splitting are the only schemes to correctly predict
the temperature profile. The results for the Co = 0.5 case are in
line with the results of the ignition case and the Co = 0.1 extinc-
tion case. Extinction is predicted earlier for all splitting schemes
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Fig. 5. Comparison of operator splitting schemes and direct integration for the
scalar extinction case for a Co number of 0.5.

compared to the Co = 0.1 case, but Simpler and Consistent Stag-
gered are closest to the DI solution.

Figure 6 compares the relative steady-state error versus the Co
number for the scalar ignition and extinction case. The steady-state
error for the ignition case (Fig. 6(a)) is negligibly small for Sim-
pler, Consistent Staggered, and Consistent Adaptive. At the same
time, the time step size dependence is confirmed for Strang, Stag-
gered, and Adaptive splitting. Lie-Trotter splitting over-predicts
the steady-state temperature by 0.5% for all but the smallest in-
vestigated Co numbers. Consistent Lie-Trotter splitting also over-
predicts the correct steady-state for large Co numbers. However,
after under-predicting the steady-state around Co = 0.1, it predicts
the correct steady-state for smaller Co numbers.

Figure 6(b) compares the steady-state results of the scalar ex-
tinction case. In general, the correct steady-state is predicted by
all steady-state preserving schemes. Consistent Staggered and Con-
sistent Adaptive splitting become unstable for Co > 1, while Con-
sistent Lie-Trotter becomes unstable for Co > 2. All three schemes
give oscillating steady-states when becoming unstable due to not
fulfilling stability criterion i) from Section 5. Strang splitting under
and Lie-Trotter over-predicts the steady-state for high Co numbers,
while both approach the correct steady-state for small Co numbers.
Adaptive splitting fails to predict extinction for Co > 0.0001 and
starts to become unstable for Co > 0.5 due to the negligible damp-
ing for large time step sizes. Staggered splitting gives the correct
steady-state for Co < 0.001 and Co > 1 but fails to predict extinc-
tion between them.

Figure 7 shows the absolute ignition (a) and extinction (b) time
errors versus the Co number for the investigated splitting schemes.
The Co > 2 cases are neglected due to stability issues of the
schemes. The temporal accuracy shows similar characteristics for
the different splitting schemes in both cases. Consistent Adaptive
and Consistent Lie-Trotter overlap in the diagrams and show first-
order accuracy over the investigated range. Staggered and Adap-
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tive splitting approach first-order accuracy for Co < 0.001 but
show lower-order accuracy for higher Co numbers. The accuracy
of the Adaptive splitting scheme remains unknown for the extinc-
tion case because it predicted extinction only for one case. Strang
and Lie-Trotter splitting also overlap and show first-order accu-
racy for Co > 0.1, while being second-order accurate for smaller
Co numbers. Simpler and Consistent Staggered show approximately
second-order accuracy.

In general, the scalar test case results are in line with the the-
oretic observations from Sections 3 to 5. Larger time steps de-
crease the accuracy of the predicted temporal evolution and affect
the steady-state results of the non-steady-state preserving splitting
schemes.

7. Combustion test case

The combustion test cases are H radical doped ignition and
near-limit extinction [11]. The ignition case is known to cause
problems for operating splitting schemes [12]. The governing equa-
tions are given by:

dy, 1 i
S A 62a
T Yim—Y) 5 (62a)
dh 1 & 18

i ;Yi,in(hi,in —h) + > ;wihi (62b)

where Y, Tns, @, p, h, and N; are the species mass frac-
tion, residence time, species consumption/production rate, den-
sity, enthalpy, and number of species. The hydrogen combustion
mechanism of Li et al. [32] was used for the thermodynamic
properties and chemistry rates. The computations were done in
python [27] using NumPy [28], SciPy [29], and the open-source
tool Cantera [17].

The ignition case features a hydrogen/air mixture with an
equivalence ratio (¢) of 0.5 with a 0.1%y,, H radical enrichment.

The initial reactor state is equal to the eaﬂilibrium concentrations
at constant temperature and pressure of the inlet stream. In con-
trast, the initial reactor state is equal to the equilibrium at con-
stant enthalpy and pressure of the inlet stream for the extinction
case. The inlet states of both cases are summarized in Table 2. The
critical residence time for the extinction case is 1.4211 x 107 s,
while the ignition case is far from the critical residence time of
1.0710 x 103 s and features H enrichment [11].

The Balanced splitting scheme has been disregarded for the in-
vestigations of the combustion test cases for the same reasons it
was omitted in the scalar test cases: Balanced splitting proved to
be unstable for Co > 0.05 for the investigated test cases.

Figures 8 and 9 compare the temperature profiles of the ig-
nition case of the different splitting schemes for Co numbers of
0.1 and 0.5. The results compare with the scalar ignition case of
Section 6. Simpler and Consistent Staggered splitting give similar
results as DI for a Co number of 0.1, while Consistent Adaptive
splitting predicts the correct steady-state but early ignition. Strang,
Staggered, Lie-Trotter, and Adaptive splitting predict late ignition
and fail to predict the steady-state temperature. Strang, Staggered,
and Adaptive splitting under-predict the steady-state temperature,
while Lie-Trotter splitting over-predicts it. Contrary to the scalar
ignition case, Consistent Lie-Trotter splitting fails to predict igni-
tion. This might be related to the balancing constant based on
the chemistry derivative. For a Co number of 0.5, all splitting
schemes except Simpler, Consistent Staggered, Consistent Adaptive,
and Adaptive fail to predict the ignition process. Adaptive split-
ting significantly under-predicts the steady-state temperature com-
pared to DI, while the other splitting schemes reproduce the cor-
rect steady-state. Adaptive splitting also predicts delayed ignition,
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Table 2
Summary combustion test case settings [11,12].
Tin (K)  p(atm)  Hp (kg/kg) H(kg/kg) Ny (kg/kg)  Oa (kg/kg)  Tres (s)
ignition 875 80 0.170 0.023 0.637 0.170 2.00 x 10°°
extinction 1000 20 0.296 - 0.556 0.148 1.42 x 107
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Fig. 8. Comparison of operator splitting schemes and direct integration for the ig-
nition case for a Co number of 0.1.

while the other schemes predict premature ignition. It is interest-
ing to note that the solution of both Adaptive splitting schemes
overshoot prior to reaching the steady-state. The same behavior
was observed by Lu et al. [11] for the Balanced splitting.

Figures 10 and 11 compare the temperature profiles of the ex-
tinction case of the different splitting schemes for Co numbers of
0.1 and 0.5. In general, the results are comparable to the scalar
extinction case. For a Co number of 0.1, Staggered and Adaptive
splitting fail to predict extinction. Furthermore, Strang, Lie-Trotter,
Consistent Lie-Trotter, and Consistent Adaptive under-predict the
extinction time, while Simple and Consistent Staggered match the
DI results. For a Co number of 0.5, besides Staggered and Adap-
tive splitting, Consistent Lie-Trotter splitting fails to predict ex-
tinction. The remaining splitting schemes, Strang, Lie-Trotter, Con-
sistent Adaptive, Consistent Staggered, and Simpler, predict earlier
extinction onset than the Co = 0.1 case.

Figure 12 compares the relative steady-state error versus the
Co number for the ignition and extinction case. In principle, the
results resemble the scalar test case for the ignition and extinc-
tion case. Figure 12(a) indicates that the steady-state preserving
schemes predict the correct steady-states for the ignition case,
while the time step dependency is indicated for the other schemes.
The stability limit of the splitting schemes is shifted towards lower
Co numbers compared to the scalar test cases. The investigated
splitting schemes become unstable for Co > 2, except for Consis-

1

== C. Adaptive === Lie-Trotter ==g= C. Lie-Trotter

Fig. 9. Comparison of operator splitting schemes and direct integration for the ig-
nition case for a Co number of 0.5.

tent Adaptive splitting, which becomes unstable for Co > 0.5. The
ignition cases reveal a significant accuracy increase for the non-
preserving splitting schemes around Co = 0.4. All splitting schemes
predict the correct steady-state for Co < 0.01. The Consistent Lie-
Trotter results deviate from the scalar test cases because it sig-
nificantly under-predicts the correct steady-state for Co > 0.01.
Figure 12(b) compares the relative steady-state errors for the ex-
tinction case. Adaptive and Strang splitting fail to predict extinc-
tion for 0.001 > Co < 2. In addition, Consistent Lie-Trotter fails
to predict the correct steady-state for Co > 0.25, while Consistent
Adaptive is unstable for Co > 1.5.

Figure 13 investigates the temporal accuracy for the combustion
ignition and extinction cases. The extinction case results are in line
with the scalar accuracy results. In contrast, the ignition case re-
sults differ from their scalar counterpart, and all investigated split-
ting schemes show similar orders of accuracy. The different accu-
racies compared to the scalar case and the analytical results are
caused by the nature of the ignition test case since it is particularly
challenging for splitting schemes [11]. The deviation of the ignition
case from the scalar and theoretical results indicates that the prob-
lem properties also affect the accuracy of splitting schemes.

In general, the combustion case results are in line with the the-
oretical and scalar test case results. Consistent Lie-Trotter splitting
is an exception because the linear scalar stability analysis suggests
that the scheme is steady-state conservative. One reason for the



M. Bosenhofer Combustion and Flame 255 (2023) 112881

2,500 0
.
‘é
2,000 .
=) E
2 %
2 1,500 z
2 g '
: = 5
1,000 2 . ; . h
'z . . . .
= . . . .
500 OL')1()_10 ‘ T \\\HH‘ T \\\HH‘ T \\\HH‘ T \\\HH‘ T T T T
2,500 0
.
9]
oy
2,000 .
=) 3
® %
2 1,500 e
s 5 o1
Q ]
g 21
15) wn
1,000 | . : . 21
. . . =1
500 N N ! 810_18 L L1 LIS 1 N L 1) O N 11 R o W MR
0 0.005 0010 0015 0.020 -t 107 1072 107t 10° 10
time (ms) Co ()
o— DI Strang 0— Simpler —g— Strang == Simpler e Staggered

=fl= C. Staggered ==p== Adaptive =@ C. Adaptive

e Staggered === C. Staggered === Adaptive
a8 e P == Lie-Trotter ==gg= C. Lie-Trotter

=== C. Adaptive === Lic-Trotter —==g== C. Lie-Trotter

Fig. 12. Comparison of relative steady-state splitting error versus Co number for

Fig. 10. Comparison of operator splitting schemes and direct integration for the L L
2. P p P J g the ignition (a) and extinction (b) cases. Unstable cases are not shown.

extinction case for a Co number of 0.1.
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different characteristics could be caused by shortcomings of the
linear analysis for the non-linear chemical sub-system. The differ-
ences between the scalar test case and the combustion test case
also indicate that the non-linear matrix has additional effects on
the operator splitting schemes compared to the non-linear scalar
operator. Moreover, the ignition case reveals an accuracy depen-
dence of operator splitting schemes on the problem properties.

8. Summary and conclusion

Stability and steady-state preservation of operator splitting
schemes for reaction-diffusion problems were examined. These in-
vestigations showed that Balanced and Simpler splitting preserve
the correct steady-state solution independently of the time step
size.

Three new steady-state preserving splitting schemes were pro-
posed based on the initial evaluation of the existing splitting. The
new schemes are based on the Staggered, Lie-Trotter, and Adap-
tive splitting schemes and feature suitable balancing constants to
preserve the steady-state.

All discussed schemes were also tested using test cases known
to cause problems for operator splitting. The cases consist of igni-
tion and extinction problems based on a dimensionless PSR case
and a hydrogen combustion case. The results confirmed steady-
state preservation of Simpler, Consistent Staggered, and Consistent
Adaptive splitting, while the Consistent Lie-Trotter splitting failed
to conserve the steady-state. The the balancing constant is the dif-
ference between the Consistent Lie-Trotter and the other schemes.
The former uses the chemical derivative as balancing constant,
while the others use the mixing derivative. Furthermore, the tem-
poral and steady-state accuracies of the schemes were investigated
for Co numbers between 0.0001 and 10. In principle, the numeri-
cal result confirmed the theoretical ones, except for the hydrogen
combustion ignition case, where all schemes have similar accura-
cies. This result indicates an influence of the problem properties
on the actual splitting scheme order of accuracy.

The scalar and combustion test cases showed that Simpler
and Consistent Staggered splitting should be used for transient
combustion simulations. Simpler splitting is second-order accu-
rate, while Consistent Staggered splitting is first-order accurate but
gives significantly better results than Consistent Adaptive splitting.
Consistent Adaptive splitting can be used for steady-state solution
algorithms since it is only first-order accurate in time but also
steady-state preserving.

The differences between the linear scalar analysis and the nu-
merical test cases indicate that the linear approximation incor-
rectly captures the non-linear chemistry operator. In addition, the
differences between the scalar and combustion test cases also in-
dicate that scalar analysis is insufficient to capture the non-linear
chemistry operator. Future work should focus on non-linear stabil-
ity analysis of operator splitting schemes to capture non-linear and
matrix effects.
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