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a b s t r a c t 

The functionality of computational fluid dynamics (CFD) for turbulent flows is limited by huge computa- 

tional demands which prevent any detailed long-term studies. In this publication, we apply the recently 

introduced, data-assisted method “recurrence CFD” (rCFD) to turbulent vortex shedding after a circular 

cylinder at Reynolds number Re = 3900 . Using a database of flow fields from short, conventional simula- 

tions, we time-extrapolate their behavior to arbitrary durations and obtain promising results for passive 

species transport with speed-up factors of more than 120 at 1/20 of the required computer power com- 

pared to the underlying large eddy simulation (LES). Besides this massive run-time reduction, we focus 

on data efficiency. For cases with strong, spatial scale separation, rCFD’s resilience towards grid coarsen- 

ing allows us to carry out calculations at lower mesh resolution provided one retains meso-scale velocity 

fluctuations as a contribution to diffusivity. This reduces database size which would otherwise become a 

bottleneck in the methodology. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The drastic increase of available computer power has extended

he scope of applicability of CFD from simple two-dimensional

ingle-phase flows to complex, transient, three-dimensional multi-

hase flows even under highly turbulent conditions. To solve such

roblems, there are several well-established techniques [1] includ-

ng direct numerical simulation (DNS), large eddy simulations (LES)

nd Reynolds-averaged Navier-Stokes simulations (RANS). Perform-

ng DNS is highly expensive since they solve the Navier-Stokes

quations directly in the entire domain and resolve the whole tem-

oral and spatial scales of the flow down to the Kolmogorov length

2–4] . The computational cost can be reduced by solving just the

arge and intermediate scales and modeling the influence of the

maller ones, which is done in LES [5] . However, still the essential

ange of time-scales and length-scales for LES limits their use to
Abbreviations: CFD, computational fluid dynamics; DMD, dynamic mode decom- 

osition; DNS, direct numerical simulation; LES, large eddy simulation; PIV, par- 

icle image velocimetry; POD, proper orthogonal decomposition; RANS, Reynolds- 

veraged Navier-Stokes; RQA, recurrence quantification analysis; rCFD, recurrence 

FD. 
∗ Corresponding author at: Department of Particulate Flow Modelling, Johannes 
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ow and moderate Reynolds numbers. RANS models require lower

patial and temporal resolution, however they bring an additional

oss of information due to statistical averaging [6] . 

Put differently, with increasing cell size, the employed sub-grid

orrections need to capture more of the ongoing physics on smaller

cales by modeling the effect of the corresponding degrees of free-

om without any explicit calculation. An alternative approach to

liminate inessential degrees of freedom was inspired by the ex-

erimental observation of coherent structures in turbulent flows

7–9] . These are characteristic spatial features which reappear in

n irregular fashion but exhibit a distinctive temporal evolution. A

uge body of research emerged trying to extract such structures

nd obtain their equations of motion using techniques like proper

rthogonal decomposition (POD) or dynamic mode decomposition

DMD) (cf. the reviews [10,11] ). 

While the high computational costs per time step and their

arge number prevent long-term investigations of transient prob-

ems using LES or unsteady RANS despite intense research activity

12–17] , reduced-order Galerkin models built from POD modes are

umerically much cheaper but suffer from long-time [18–25] and

ther types of instabilities [26–31] that require additional handling.

In this work, we want to apply the recent approach rCFD [32] to

urbulent problems to overcome the limitation of costly computa-

ions. Based on the characteristic temporal life-cycle of dominant

ow structures, rCFD aims to time-extrapolate the phase-space tra-

https://doi.org/10.1016/j.compfluid.2019.104348
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104348&domain=pdf
mailto:sanaz.abbasi@jku.at
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Nomenclature 

Greek letters 

� filter width 

�t time step 

θ angle 

ν viscosity 

ρ density 

τ time range 

τc residual scalar flux 

τr residual stress tensor 

� vorticity 

Latin symbols 

C species, constant, coefficient 

D diameter, distance norm/matrix 

D diffusivity 

E mean interval steps 

F / G filter function 

F force 

f frequency 

k residual kinetic energy 

L length 

N distance norm’s normalization constant 

P jump probability 

p pressure 

R recurrence norm/matrix 

Re Reynolds number 

r radius 

r / x position 

S rate of strain tensor 

Sc Schmidt number 

St Strouhal number 

S source term 

t time 

U ∞ 

free stream velocity 

u velocity 

x stream-wise direction 

y transverse direction 

z span-wise direction 

Subscripts/Superscripts 

b/e begin/end 

bin. binary 

c cells 

D/L drag/lift 

F/G filter 

i interval i 

rec recurrence 

rms root mean square 

sep separation 

sgs sub-grid scale 

sim similar state 

vs vortex shedding 

∞ free stream 

— filtered 

〈 〉 averaged 

jectory of systems exhibiting recurring patterns, e.g. vortices be-

hind blunt bodies, according to recurrence plots introduced by Eck-

mann et. al. [33] and later formalized in the recurrence quantifi-

cation analysis (RQA) [34,35] . Using fields from an initial, short,

detailed simulation (regardless if DNS, LES or RANS), the long-

time evolution is approximated assuming that similar configura-

tions will show similar short-term behavior. Essentially, a large
umber of flow field sequences are chained in a smooth fashion,

hich amounts in an iterated method of analogues [36] . 

Although the fields can have the same high level of spatial

esolution as the underlying simulation, time-extrapolation is ex-

remely cheap. Not even a set of mode equations of motion needs

o be solved. At the same time, no stability problems occur since

nly information from the reliable, initial simulation is employed.

hese properties make the method very interesting for long-time

tudies of passive or weakly coupled processes on highly dynamic

ackgrounds, e.g. species transport in a turbulent flow. 

Here, to examine the proper functionality of rCFD in turbulent

ows, we want to answer two questions: a) Is it possible to cap-

ure turbulent long-time transport behavior based on small initial

ata sets? b) Without the need to solve the fluid momentum equa-

ion and to take care of pressure-velocity coupling, how much can

e reduce temporal and spatial resolution and still get accurate re-

ults with respect to species distribution? To this end, we test our

ethodology on the well-studied case of vortex shedding behind

 circular cylinder with available experimental data to validate our

etailed simulation results. 

We first review the fluid equations of motion and describe

he rCFD procedure in Section 2 . Next, Section 3 illustrates main

arameters and the setup of the full and the rCFD simulations.

hen, we show data validation of the LES calculation, investi-

ate the flow’s recurrent behavior, present simulation results of

pecies transport using rCFD and carry out a performance analy-

is in Section 4 . The final Section 5 points to conclusions of the

ork and gives an outlook on future activities. 

. Theoretical background 

Here, we briefly review the set of equations governing a single-

hase, incompressible flow from the LES perspective and describe

he rCFD approach. While rCFD can be applied under compressible

onditions in a straight-forward fashion, we restrict ourselves to

he incompressible, divergence-free case in the present work for

he sake of simplicity. 

.1. Fluid equations of motion 

The system of equations considered for an incompressible,

ingle-phase fluid along with passive transport of a scalar concen-

ration C are 

 · u = 0 (1)

∂ u 

∂t 
+ ( u · ∇ ) u = − 1 

ρ
∇p + ∇ · ν∇ u (2)

∂C 

∂t 
+ ( u · ∇ ) C = ∇ · D∇C + S (3)

here diffusivity 

 = 

ν

Sc 
(4)

s connected to viscosity ν via the Schmidt number Sc , and S is

 constant source term. As mentioned in Section 1 , LES is one of

he methods to numerically simplify the Navier-Stokes equations

hrough a filtering operation 

¯  ( x , t ) ≡
∫ 

d r G ( r , x ) u ( x − r , t ) . (5)

pplying the kernel G ( r , x ) to Eqs. (1) – (3) , the set of filtered

quations can be written as 

 · ū = 0 (6)
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∂ ̄u 

∂t 
+ ( ̄u · ∇ ) ̄u = − 1 

ρ
∇ ̄p + ∇ · ν∇ ̄u − ∇ · τr (7)

∂ ̄C 

∂t 
+ ( ̄u · ∇ ) ̄C = ∇ · D∇ ̄C − ∇ · τc + S̄ (8)

here the residual stress tensor τr ≡ u u − ū ̄u and the residual

calar flux τc ≡ u C − ū ̄C require closure [1] . Introducing the sub-

rid scale viscosity νsgs , the Boussinesq approach postulates the

imple relationship 

r = −2 νsgs ̄S (9) 

etween the residual stresses and the filtered rate-of-strain tensor

¯
 ≡ 1 

2 

(
∇ ̄u + 

(∇ ̄u 

)T 
)
. (10) 

ased on dimensional arguments, one can make an ansatz 

sgs = C k 

√ 

k � (11) 

n terms of the residual kinetic energy k ≡ 1 
2 ( u · u − ū · ū ) , the fil-

er width � which is the cube root of cell volume and a model

oefficient C k . Among the large number of models to obtain k from

vailable quantities, we chose a simple, algebraic approach follow-

ng Smagorinsky [37] , which is based on the assumption of local

quilibrium between the production and dissipation of turbulent

inetic energy and leads to [1] 

 = 

2 C k 
C ε

�2 S̄ : S̄ (12) 

 k = 0 . 094 (13)

 ε = 1 . 048 . (14)

Analogous to the residual stress tensor, we can model the resid-

al scalar flux with the gradient diffusion hypothesis 

c = D sgs ∇ ̄C . (15) 

lthough most generally, sub-grid diffusivity can show some de-

ree of anisotropy and hence D sgs is a tensor [38–41] , recent stud-

es [42,43] have pointed out that LES predict transport mecha-

isms with a scalar sub-grid diffusivity D sgs = νsgs /Sc sgs accurately,

hereas RANS require an anisotropic treatment. 

We stress that the methodology presented in the following sec-

ions is completely independent of the specific choice of D sgs and,

ore generally, may be applied with any turbulence model to gen-

rate the velocity fields for the database. 

.2. Recurrence-based time extrapolation 

The main objective of rCFD is time-extrapolation of a system’s

ehavior based on information from a short-time, detailed simu-

ation while maintaining a high degree of accuracy. Therefore, to

tart with rCFD, it is essential to record a sufficient amount of data

omprising the required flow fields over a certain time range τ rec 

uring which the fields are stored with a specified sampling time

nterval �t rec . The latter needs to be chosen such that the flow

oes not change considerably within �t rec in order to solve the

ransport equation. τ rec is rarely known a priori, e.g. if the flow is

riven by a single dominant frequency. Otherwise, it needs to be

etermined from the recurrence statistics (see below). 
.2.1. Recurrence statistics 

To quantify a system’s degree of recurrence, a distance norm

32] , e.g. 

 (t , t ′ ) ≡
[ 

1 

N 

∫ 
d 3 r 

(
u ( r , t) − u ( r , t ′ ) 

)2 
] 1 

2 

(16) 

ormalized by 

 ≡ max t ,t ′ 

∫ 
d 3 r 

(
u ( r , t) − u ( r , t ′ ) 

)2 
(17) 

ompares velocity fields at two times for all N = τrec / �t rec times

tored in the database giving rise to the distance matrix 

 m,n ≡ D (m �t rec , n �t rec ) . (18)

he lower values in the distance matrix represent the similarity

etween two states, and vice versa. Moreover, one can obtain vari-

us characteristic numbers of the system from the distance matrix,

.g. the mean nearest-neighbor distance 

 sim 

≡ 1 

N 

N ∑ 

m 

min n D m,n . (19) 

he saturation or rather the appearance of plateaus of D sim 

or of

QA parameters with database size can be used to estimate sensi-

le values of τ rec . 

Alternatively, Eqs. (16) and (18) may be reformulated in terms

f a recurrence norm and matrix, 

 (t , t ′ ) ≡ 1 − D (t , t ′ ) (20)

 m,n ≡ 1 − D m,n , (21) 

espectively. The binary version of Eq. (21) , R 
(bin.) 
m,n (ε) ≡ 
(ε −

 m,n ) , has been used extensively in literature. Among various tar-

et systems, recurrence plots and statistics have also been em-

loyed to analyze turbulent flows [44–50] . 

In the following section, we show how one can utilize them to

pproximate their temporal evolution. 

.2.2. Recurrence path 

Time evolution of a recurrent flow is obtained from a recur-

ence path on the recurrence statistics. As explained in previous

ork [32] , one starts at a given begin time with the correspond-

ng original flow data. After generating a time interval of random

ength (see below for details) with consecutive fields, the state of

he interval end is identified with the most similar past one in the

istance matrix. Likewise, after a certain number of steps in the

atabase from that state on, the flow field is updated based on the

inimum value of distance norm in the distance matrix for the

nd of the second interval and so on. 

For some cases, it is advantageous to generate a recurrence path

rom two or more separate databases, e.g. because of various pos-

ible process states [51,52] or to enforce certain constraints, which

e model as a Markov process. For example, the reflection sym-

etry of time-averaged vortex shedding in geometries with the

ame symmetry is not fully recovered from a limited number of

seudo-periods due to turbulent fluctuations. However, based on

his knowledge, we can record a database D 

(1) for a small number

f cycles and guarantee symmetry of the final results by extend-

ng it with its mirrored counterpart D 

(2) to give D = D 

(1) ∪ D 

(2) .

ompared to the case of a single database, the only difference is

hat the continuous time intervals cannot range from one into an-

ther. One can set a “jump probability” P to obtain a desired mean

nterval length E (�t i / �t rec ) = (1 − P ) /P well below the database

ize, e.g. 1/4 of it, but still large enough to take intervals of mul-

iple consecutive steps. We go from one state to that �t rec later
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Fig. 1. Recurrence path generated for two separate databases. Sequences of inter- 

vals of consecutive time steps are connected via jumps in the recurrence statistics. 

The database for finding the next interval, i.e. the minimum value in the distance 

matrix, is selected randomly according to predefined weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flow chart for creating a recurrence path. For each step, it has to be decided 

if a jump is performed or not, and if so, into which database. 
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with probability 1 − P unless it corresponds to the end of the cur-

rent database D 

( m ) . Otherwise, a jump in the recurrence statistics is

performed. First, based on their predefined, relative weights, either

the same or a new database D 

( n ) is selected and then, the most

similar flow configuration is looked up in the distance matrix. Ulti-

mately, this procedure which is depicted in Figs. 1 and 2 gives a se-

quence of intervals [ t (b) 
i 

, t (e ) 
i 

= t (b) 
i 

+ �t i ] , [ t 
(b) 
i +1 

, t (e ) 
i +1 

= t (b) 
i +1 

+ �t i +1 ] ,

. . . , with mean length E( �t i / �t rec ). According to the recurrence

path generated from these intervals, the corresponding original

flow data is used to go on with the process resulting in time series

of the form 

u 

(
r , t (b) 

i 

)
, u 

(
r , t (b) 

i 
+ �t rec 

)
, · · · , 

u 

(
r , t (e ) 

i 

)
≈ u 

(
r , t (b) 

i +1 

)
, u 

(
r , t (b) 

i +1 
+ �t rec 

)
, · · · . (22)

2.2.3. Recurrence CFD 

After acquiring the recurrence path, we can study any passive

process like species transport by solving only a single convection-

diffusion equation 

∂C 

∂t 
+ ( u rec · ∇ ) C = ∇ · D rec ∇C + S (23)

with the information recorded in the database ( u rec and D rec ). The

diffusivity D rec contains contributions from the molecular and the

sub-grid scale diffusivities D and D sgs . If the mesh used for rCFD is

the same as the one built for LES, one can write 

D rec = D + D sgs , (24)

and directly save and use D sgs in the database. However, since here

only species transport is of importance and there is no need to

solve the momentum and pressure equations, we may use a much

coarser grid onto which we map the recorded flow fields before

solving Eq. (23) . While computationally much cheaper, the transi-

tion from the fine LES to the coarse rCFD mesh introduces a new

closure problem. We need not only include sub-grid scale fluctu-

ations already taken care of by D sgs but also retain fine-grid scale

ones due to the second filtering operation. 

There are at least two strategies to obtain D sgs for the coarser

grid. In the paper, we chose to use an LES closure model like
qs. (11) and (15) on the new mesh. Following Germano [53,54] ,

given two filters F and G, the residual stress tensor at FG level,

F G 

(
u i , u j 

)
= 

〈
u i u j 

〉
F G 

− 〈 u i 〉 F G 
〈
u j 

〉
F G 

, is equal to the G-averaged

alue of the residual stress at the F level plus the resolved tur-

ulent stress extracted from the resolved scale F”, 

F G 

(
u i , u j 

)
= 

〈
τF 

(
u i , u j 

)〉
G 

+ τG 

(〈 u i 〉 F , 
〈
u j 

〉
F 

)
. (25)

If we consider our two filters as the LES one and the grid coars-

ning (C) for rCFD, the residual kinetic energy of the coarser mesh

an be computed as 

 C = 

〈 
k + 

1 

2 

ū · ū 

〉 
C 

− 1 

2 

〈 ̄u 〉 C · 〈 ̄u 〉 C (26)

n terms of the LES sub-grid kinetic energy k and the fine grid ve-

ocity ū . We can use an LES model and calculate the sub-grid dif-

usivity for the coarsened mesh based on the sub- and fine-grid
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Fig. 3. Illustration of the computational grid created for LES referred to as “L1”. The number of the cells is about 3.85 × 10 6 . The fine grid region and the source location are 

magnified. 

Table 1 

Geometric dimensions of the 

computational domain. 

Domain parameter Length 

L x 30 D 

L y 10 D 

L z πD 

k

D
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S  

Table 2 

Computational grids and sam- 

pling times employed in rCFD. 

The number of nodes are re- 

duced proportionally from R1 

to R3 with reference to L1. 

Spatial resolution 

N c; L1 3.85 × 10 6 

N c; R1 7.68 × 10 5 

N c; R2 4.75 × 10 5 

N c; R3 2.65 × 10 5 

Sampling frequency 

f rec / f vs 450 

f rec / f vs 90 

f rec / f vs 45 

o  

n  

s  

g  

d

3

 

s  

c  

b  

F  

r  

i

 

m  

S  

f  

q  

s  

t  

u  

a  

a

 

τ  

p  

f

 

w  

t  
inetic energy k provided by the recurrence database, e.g. 

 sgs = 

C k 
√ 

k C �

Sc sgs 
. (27) 

Clearly, this method eventually becomes unreliable for very

oarse grids. As an alternative to our approach employing Eq. (27) ,

ne could directly save the sub- and fine-grid diffusivity of pas-

ive transport from the LES simulation with respect to the coarser

rid [43] . Such a strategy would also allow to use other turbulence

odels than those employing eddy viscosities, e.g. deconvolution-

ased ones [55,56] , for the generation of the database. However,

e stress that the resulting sub-grid diffusivity needs to be ob-

ained from the initial simulation and not during the rCFD run

ith grids being far too coarse for any deconvolution operations.

t is worth mentioning that for the first approach – provided we

tterly trust rCFD –, there is no requirement of solving the pas-

ive transport equation (8) during LES, whereas in the second strat-

gy, we would be forced to include species transport in the data-

enerating calculations. 

. Simulation setup 

Our case of study to apply the method to a turbulent flow was

ortex shedding after cylinder with diameter D in a sub-critical

ow regime [57,58] at Re ≡ U ∞ 

D/ν = 3900 . In this section, we de-

cribe the setups of the LES and the rCFD simulations. In several

spects, the former is aligned with other studies [59–61] with re-

pect to the flow configuration and comparing the results. 

.1. LES 

The set of equations was solved using the PISO algorithm

62,63] with the OpenFOAM toolbox. The computational grid built

or this case (in the following referred to as “L1”) is presented in

ig. 3 , and has about 3.85 × 10 6 cells. The dimensions of the do-

ain are listed in Table 1 . The mesh was resolved near the cylinder

o avoid using wall functions ( �r/D = 0 . 001 ), and the inlet bound-

ry condition was considered to be laminar [59–61] . A cell set at

/D = 2 . 85 with the length of 0.3 D was created for the purpose

f adding a constant source of species. The sub-grid and laminar

chmidt numbers were set to 0.7 and 0.9, respectively. A time step
f �t LES = 10 −3 D/U ∞ 

was sufficiently small to ensure a Courant

umber of less than 0.3. The discretization scheme of the tran-

ient term was first-order implicit Euler, those applied for pressure

radient, convection and diffusion term were second-order central

ifference [63] . 

.2. rCFD 

As mentioned in Section 2.2 , if one is not interested in smallest-

cale details, it is possible to perform rCFD on a coarser mesh be-

ause only the passive transport equation needs to be solved. We

uilt three different grids referred to as “R1”, “R2” displayed in

ig. 4 and “R3” by proportionally decreasing the number of nodes

elative to L1 with the aim of studying the method’s efficiency and

ts limit in grid coarsening. 

In addition to grid size, another factor affecting the perfor-

ance was the recurrence sampling time �t rec . As explained in

ection 2.2 , the flow information should not change too strongly

rom one time step to the next. In other words, the recording fre-

uency f rec for which we tested three different values had to be

ignificantly larger than the vortex shedding frequency f vs [32] . On

he other hand, too high values would have increased database size

nnecessarily. A summary of the number of cells for each mesh

long with the ratio between the recurrence sampling frequencies

nd the shedding frequency f vs is provided in Table 2 . 

Another matter to consider was the time range of the database

rec which should cover a suitable number of shedding cycles with

eriod τ vs . In this work, we chose a range of five cycles. The reason

or this choice is discussed in detail in Section 4.2 . 

For generating the recurrence path, we mirrored the databases

ith respect to the y = 0 plane and assigned them equal weights

o guarantee symmetric time-averaged results. We chose a mean
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Fig. 4. Illustration of the computational mesh created for rCFD referred to as “R2”. The number of the cells is 4.65 × 10 5 . The fine-grid region and the source location are 

magnified. 

Fig. 5. Time histories of force coefficients of the cylinder at Re = 3900 . The time 

range corresponds to approximately 75 vortex shedding cycles. Besides fast oscilla- 

tions, slower variations are present, too. 
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Fig. 6. Wall data for (a) mean pressure coefficient and (b) mean normalized vortic- 

ity over the cylinder after 75 shedding cycles at Re = 3900 . Experimental data are 

extracted from 

•: Norberg [65] and � : Son and Hanratty [71] . 
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interval size of consecutive fields of E (�t/ �t rec ) 
! = 0 . 2 τrec / �t rec 

from which the corresponding jump probabilities were derived. 

Discretization schemes used for rCFD were as the same as the

ones in LES, but the generally coarser mesh allowed for a larger

time step of �t rCFD = 5 × 10 −3 D/U ∞ 

for the passive scalar equation.

4. Results 

In this section, we present a thorough validation of our LES re-

sults and our study on species transport with LES as well as rCFD.

The performance improvement by rCFD is highlighted from various

perspectives. 

4.1. LES results 

Varying numbers of shedding periods considered to acquire

mean flow statistics can be found in the literature. Franke and

Frank [64] mentioned that at least 40 shedding periods are nec-

essary. On the other hand, Lysenko et. al. [60] and D’Alessandro

et. al. [61] have gathered statistics over more than 150 shedding

cycles for their works. We carried out time averaging over approxi-

mately 75 vortex shedding cycles after a duration of 125 D / U ∞ 

after

which we considered the turbulent flow as fully established. 

4.1.1. Wall data 

One can define lift and drag coefficients C L ≡ F L / 
1 
2 ρ∞ 

U 

2 ∞ 

L z D and

 D ≡ F D / 
1 
2 ρ∞ 

U 

2 ∞ 

L z D where F L and F D are normal and tangential

forces acting on the cylinder surface, respectively [58] . Fig. 5 de-

picts time histories of C L and C D over the time range of approxi-

mately 75 shedding cycles. We found the root mean square of our

lift coefficient, C L,rms = 0 . 13 , is in the range of [0.05,0.6]. Similarly,

the mean drag coefficient, 〈 C D 〉 = 1 . 1 , is consistent with the re-

sults available in literature from both LES and experimental data

[60,61,64–69] . 
The Strouhal number St ≡ f vs D / U ∞ 

describes the periodicity of

he vortex shedding and can be obtained through fast Fourier

ransform of the lift coefficient. We determined a value of St =
 . 224 in close agreement with Zhang et al. [66] and Ouvrard

t al. [70] . 

Fig. 6 a displays the distribution of the time-averaged pressure

oefficient 〈 C p 〉 ≡ 2 ( 〈 p 〉 − p ∞ 

) /ρU ∞ 

on the cylinder surface. The

esulting mean base suction coefficient of 
〈
C p;θ=180 ◦

〉
= −0 . 875 is

n very good agreement with the range [ −0 . 97 , −0 . 85] from other

tudies [60,61,64,65,68,70] . 

The normalized magnitude of mean vorticity 〈 �〉 / 2 √ 

Re on the

ylinder surface, with � ≡ ∇ × ū , depicted in Fig. 6 b shows a sep-

ration angle of θsep = 87 ◦ which lies within the bounds [86 ◦, 89 ◦]

cquired from experimental and LES data [60,61,64,67,68,71] . 
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Fig. 7. Mean stream-wise velocity in the wake center-line of the cylinder over ap- 

proximately 75 shedding cycles at Re = 3900 . Experimental values were extracted 

from Parnaudeau et. al. [59] and × : Lourenco and Shih [67] . 

Fig. 8. Mean (a) stream-wise and (b) transverse velocity at various locations in the 

wake region of the cylinder over approximately 75 shedding cycles at Re = 3900 . 

The values are shifted to plot the velocity profiles all together. — depicts LES results 

and experimental measurements are sketched from Parnaudeau et. al. [59] , × : 

Lourenco and Shih [67] and �: Ong and Wallace [72] . 
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Fig. 9. Mean (a) stream-wise and (b) transverse velocity fluctuations. For details 

refer to the caption for Fig. 8 . 

Table 3 

Integral flow features. An overview of both experimental and numerical stud- 

ies is presented. 

C l,rms C d L r / D θ sep −
〈
C p,b 

〉
Parnaudeau et al. [59] – – 1.51 – –

Lourenco and Shih [67] – 0.99 1.18 – –

Kravchenko and Moin [68] – 1.04 1.35 88 ◦ 0.94 

Lysenko et al. [60] 0.09 0.97 1.67 88 ◦ 0.91 

D’Alessandro et al. [61] 0.146 1.023 1.427 87 ◦ 0.878 

Norberg [65] 0.15 0.98 – – 0.90 

this work 0.13 1.1 1.55 87 ◦ 0.875 
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.1.2. Flow statistics 

We validated our results for the flow statistics by comparing

hem with experimental data [59,67] . The time-averaged stream-

ise velocity component along the center-line of the wake region

resented in Fig. 7 is in excellent agreement with the work of Par-

audeau et al. [59] . Fig. 8 illustrates the mean velocity profiles at

ifferent sections in the wake of the cylinder compared to mea-

urements. Likewise, mean velocity fluctuations are sketched along

ith the experimental information in Fig. 9 . It is evident that the

resent simulation was very close to the PIV measurements [59] . 

Table 3 provides a summary of our LES data compared to other

tudies. 
.2. Recurrence analysis 

The rCFD procedure relies on a database of adequate size which

s generally not known a priori. Since both its creation and manip-

lation are computationally expensive, one will look for it to be

s small as possible but still contain the relevant physics of the

ow it was obtained from. If any symmetries of the system are

nown, one can use them to extend it with hardly any additional

osts. Therefore, we expanded the database containing approxi-

ately five shedding cycles (see below for the choice of size) with

elocity fields mirrored in y-direction as explained in Section 3 . 

Next, we assessed the flow’s degree of recurrence after the

ylinder by calculating the distance norms for both databases to

btain the combined one, D ( t, t ′ ), shown in Fig. 10 for R2 with

t rec / �t LES = 50 . One can intuitively perceive some amount of pe-

iodicity corresponding to τ vs . Line plots of D ( t, t ′ ) with one time

rgument fixed in Fig. 11 underline that while minima are located

t multiples of τ vs , the flow is clearly not fully periodic. Although

elocity fields recur approximately after τ vs , they are not identi-

al due to turbulent fluctuations. This explains the need to retain

everal shedding cycles for a proper description. 
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Fig. 10. The combined distance plot calculated for R2 corresponding to τrec = 10 

shedding cycles. The dashed line separates the primary database and the mirrored 

one. Parallel to the main diagonal, weaker local minima (similar configurations) are 

located, which are separated by pronounced maxima (different states). 

Fig. 11. The distance norm value for R2 at the times of 2 ( ) and 3 ( ) 

cycles for the primary database. Though recurrent within a certain tolerance, the 

flow is not fully periodic. 

Fig. 12. Average nearest-neighbor distance over recurrence matrix size. After a fast 

drop, the curve decreases slowly and even shows a very weak increment for large 

times. For each duration, the recurrence matrix contained the same number of orig- 

inal and of mirrored flow fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparison of error norms for (a) time-averaged velocity and (b) its fluc- 

tuation over 75 shedding cycles with different numbers of shedding cycles in the 

database. A clear trend of decreasing errors with database size can be observed. 

Each database contained symmetrized velocity fields, e.g. two cycles consisted of 

one recorded cycle plus its mirrored counterpart. Note that for velocity, the error 

obtained from the mean and variance of the database was generally lower than 

that from the recurrence process (see text for more details). 
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We stress that such a (pseudo-)periodicity is not necessary

for rCFD which can handle a completely irregular reappear-

ance of patterns as long as the database contains their recur-

rence.Consequently, the average degree of recurrence may be used

as an indicator for sufficient database size by looking at the evo-

lution of the mean nearest neighbor distance D sim 

( t ) defined in

Eq. (19) . In a recent study on a gas-solid fluidized bed, one of

us [73] found a pronounced initial drop of D sim 

( t ) that was fol-

lowed by a slow descent connected to the complexity of the sys-

tem. Once within the second regime which may even show slight,

temporary increments of D sim 

( t ), extending the database added

only little further information. Fig. 12 illustrates D sim 

( t ) for the

combined, i.e. symmetrized, database for up to ten cycles. Unsur-

prisingly, the characteristic, fast drop is followed by a rather con-
tant plateau after one to two shedding cycles. After this dura-

ion, new information accumulates only slowly. As a compromise

etween memory demands and sufficient amounts of information,

e generally use database sizes of a few multiples of the dropping

ime as a rule of thumb. In the present case, we chose approxi-

ately five cycles, which resulted in a total of ten cycles because

f the symmetrization procedure. 

.3. Time-extrapolation 

Using the recurrence database, we could time-extrapolate the

volution of u ( r , t) . In order to verify if the recording duration

ased on D sim 

( t ) had been sufficiently long to reproduce statisti-

ally valid long-term properties, we investigated the time-averaged

elocity components and its fluctuations over 75 shedding cycles

cquired from rCFD simulations with different numbers of cycles

n the database and compared them with mean profiles calculated

rom the database itself according to different number of shedding

ycles. Therefore, we defined error norms 

 1 = 

1 

V U ∞ 

∫ 
d 3 r| ̄u − ū LES | (28)

 2 = 

1 

V U 

2 

∫ 
d 3 r| u 

′ u 

′ − u 

′ u 

′ 
LES | (29)
∞ 



S. Abbasi, S. Pirker and T. Lichtenegger / Computers and Fluids 196 (2020) 104348 9 

Fig. 14. Snapshots of species concentration at t = 3 τrec for (a) LES on L1 and rCFD 

on (b) R1, (c) R2 and (d) R3. The effect of grid coarsening can be observed. Contour 

lines are sketched at values of 0.01, 0.06, 0.11, 0.13. 
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Fig. 15. Snapshots of species concentration at t = 30 τrec for (a) LES on L1 and rCFD 

on (b) R1, (c) R2 and (d) R3. Due to turbulent fluctuations and the approximate 

nature of the recurrence process, single realizations can differ, but are accurate in 

a statistical sense. Contour lines are sketched at values of 0.01, 0.05, 0.09, 0.13 and 

0.17. 
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hich are displayed in Fig. 13 . The errors from the recurrence pro-

ess after a few shedding cycles were in the range of one or two

ercent and below for the velocity average and fluctuations, re-

pectively, which we deemed acceptable for our purposes. Inter-

stingly, the errors kept decreasing when the mean recurrence de-

ree in Fig. 12 had already leveled out. Consequently, one should

ot blindly rely on a single characteristic number of the recurrence

tatistics, but carry out a posteriori analyses, too. 

Additionally, we underline the purpose of rCFD to study long-

erm processes like species transport by time-extrapolating the un-

erlying velocity field. However, it does not provide new informa-

ion on velocity itself. Hence, the error in the time-extrapolated ve-

ocity field cannot be lower than that of the evenly time-averaged
atabase in Fig. 13 . We stress that the situation is utterly different

or species transport (cf. Section 4.4 ). 

.4. Species transport 

We studied passive scalar transport by adding a source in the

ake region (cf. Fig. 3 ). Instantaneous mass concentrations in the

ake region at two selected times for LES on L1 and rCFD on

1, R2 and R3 are displayed in Figs. 14 and 15 . In the beginning

f the rCFD simulations, the generated recurrence paths were the

ame, therefore species profiles demonstrated similar patterns at

 = 3 τvs . After some time at t = 30 τvs with arising slight changes
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Fig. 16. Snapshots of mean species after 75 cycles for (a) LES on L1 and rCFD on 

(b) R1, (c) R2 and (d) R3. Contour lines are sketched at values of 0.01, 0.03, 0.05, 

0.07, 0.09 and 0.11. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Time-averaged species transport profile at different locations in the wake 

region of the cylinder over : 5 and : 75 shedding cycles. A large number 

of shedding cycles is required for statistical averaging because of the high-level of 

fluctuations. The data are shifted to be visible in one plot. 

Table 4 

The relative error for the time- 

averaged, total amount of species in 

the whole domain. 

Mesh Relative error 

R1 0.0064 

R2 0.0066 

R3 0.007 
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in recurrence paths in each rCFD simulation and depending on the

level of fluctuations in these periods, the instantaneous profiles

showed some minor deviations particularly further downstream of

the source. However, the time-averaged species profiles after 75

shedding cycles presented in Fig. 16 agreed extremely well and dif-

ferent recurrence paths did not affect the mean species profile due

to statistical averaging. Fig. 17 compares time-averaged concentra-

tion profiles over 5 and 75 shedding cycles and verifies the ne-

cessity of time averaging over long time periods (as mentioned in

Section 4.1 ) in order to acquire statistically valid data for turbulent

flows. 

We note that the results for the first two grids were in very

good agreement with the LES simulation with reduced cell num-
ers by factors of 5 and 8, and even the coarsest mesh with 1/15

f the original cell number showed only little deviations. The effect

f grid coarsening could be distinguished for time-averaged species

uctuations in Fig. 18 . However, one can observe that the profiles

ere qualitatively comparable. 

For the sake of a more detailed comparison, we provide three

roups of species line plots based on different values of �t rec for

he computational grids specified in Table 2 . Fig. 19 a illustrates

he mean profiles at different sections in the wake region of the

ylinder studied with LES on L1 compared to rCFD on R1, R2 and

3 with the smallest �t rec . rCFD on R1 and R2 was in very good

greement with LES, but for the coarsest mesh R3, we see the on-

et of deviations. The same behavior can be observed for larger

ime steps, i.e. smaller recurrence frequencies in Fig. 19 b and c,

hich indicates that one may be quite generous with the choice of

ampling steps. 

Additionally, we provide two quantitative measures for the

btained accuracy. The relative error for the system-wide, total

mount of time-averaged species calculated from rCFD on R1, R2

nd R3 in comparison to LES on L1 was well below one percent

or all investigated cases, cf. Table 4 . Furthermore, the error 

 C = 

∫ 
d 3 r| ̄C − C̄ LES | (30)

f the spatial species distribution is displayed in Fig. 20 for the

arious meshes. Although the number of cells was decreased 5, 8

nd 15 times, the error remained in the same order of magnitude,

hich demonstrates that rCFD is capable of dealing with rather

oarse grids. However, we believe that an intuitive notion for the

ethod’s accuracy may be drawn more easily from Figs. 14–19 . 

Furthermore, Fig. 21 shows a comparison between the errors

f species distribution time-averaged over 75 shedding cycles from

CFD and obtained from considering only databases with different

umber of cycles without extrapolation. Here, one can observe the

mportance of methods like rCFD since even for an almost periodic

rocess like vortex shedding and even after 10 cycles, it makes a

ifference for species profiles if we time-extrapolate the dynamics

r not. 
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Fig. 18. Snapshots of mean species fluctuations after 75 cycles for (a) LES on L1 

and rCFD on (b) R1, (c) R2 and (d) R3. Contour lines are sketched at values of 0.001, 

0.0 03, 0.0 05 and 0.0 07. 

 

b  

c  

a  

F  

(  

r  

b

4

 

i  

m  

s  

Fig. 19. Mean mass transport profile at different locations in the wake region of 

the cylinder at Re = 3900 for the recurrence time intervals of (a) �t rec / �t LES = 10 , 

(b) �t rec / �t LES = 50 and (c) �t rec / �t LES = 100 . — corresponds to LES on L1, to 

rCFD on R1, rCFD on R2 and rCFD on R3. The data are shifted to be visible 

in one plot. 
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The resilience of rCFD towards grid coarsening is underlined

y the anticipated, unsatisfactory performance of LES on equally

oarse meshes. We carried out an LES on R1 and compare time-

veraged species profiles on L1 and R1 over 75 shedding cycles in

ig. 22 . As expected, without very fine grids and small time steps

associated with much higher computational costs), LES led to poor

esults, while rCFD worked well with a considerably reduced num-

er of cells as well as greater time steps. 

.5. Performance analysis 

One of the main purposes and advantages of the rCFD method

s the reduction of computational costs. We analyzed its perfor-

ance for turbulent vortex shedding for various selected cases

pecified in Table 5 . To draw a reasonable comparison, we tried
o keep the number of cells per number of processors approxi-

ately constant. Therefore, the last column of Table 5 corresponds

o number of cells per one core. 

Fig. 23 depicts the total run-time of the LES and rCFD cases sep-

rated into contributions from the solution of the passive scalar

ransport equation and from other processes. The drastic reduc-

ion of the overall computation time had two reasons. First, about

0% of run-time in LES was spent with the velocity and pressure

quations which need not to be solved in rCFD. Second, due to the

arger permissible value of �t rCFD compared to �t LES , the passive

ransport equation was solved more than 14 times faster in rCFD

han in LES. 

On the other hand, rCFD had to read the database and calcu-

ate the distance matrix, for which the loading time is presented in
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Fig. 20. The error E C of the spatial species distribution for different grid resolutions. 

The resilience of rCFD towards mesh coarsening can be deduced from the relatively 

weak dependence of E C from the cell number. 

Fig. 21. The error E C of the spatial species distribution for different number of cy- 

cles in the database. The difference of 1.5% even after 10 shedding cycles demon- 

strates the advantage of using rCFD. 

Fig. 22. Normalized mean mass transport at different locations in the wake region 

of the cylinder at Re = 3900 performed by LES on L1 and R1. — corresponds to LES 

for L1 and to LES for R1. As expected, LES becomes inaccurate with coarser 

grids. The data are shifted to be visible in one plot. 

Fig. 23. CPU times for LES and rCFD cases with the details explained in Table 5 . 

CPU times for different grids with the same recurrence time interval in rCFD ap- 

proach are approximately in the same order of magnitude. 

Table 5 

Details of each case for the performance analysis. The number of cells per pro- 

cessor is mentioned to provide a comparison. 

Case Mesh �t rec No. of processors No. of cells / core 

LES L1 – 40 96 125 

rCFD(1) R1 10 ×�t LES 8 96 000 

rCFD(2) R2 50 ×�t LES 4 118 750 

rCFD(3) R3 100 ×�t LES 2 132 500 

Fig. 24. (a) Loading and (b) simulation times for different grids with various sam- 

pling time steps �t rec carried out by rCFD. Due to the number of cells per CPU, 

results are rather insensitive to the number of cores. Loading times show a very 

high dependence on �t rec , while simulation run-times are less affected. 
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ig. 24 a. By increasing the sampling time step, the number of snap-

hots in the database decreased, and therefore the loading time for

ur largest recurrence time step was reduced by at least one or-

er of magnitude. While it constituted the major contribution to

un-time for the case with the smallest sampling step, it became

egligible for that with the largest one. 

CPU times for updating the fields along with solving the passive

ransport equation are indicated in Fig. 24 b. The simulation times

ere close to each other because we used approximately the same

umber of cells per processor. We note that the lower simulation

ime for R1 corresponds to the lower number of cells per one CPU

n comparison to other grids. 

Altogether, the LES simulation was performed on 40 processors

ith an approximate total time of 200 h while our rCFD simulation

n the coarsest mesh and with the largest sampling step took only

bout 60 0 0 sec on 2 processors. This amounts in a speed-up of

ore than 120 at 1/20 of required CPU power. 

As mentioned above, since finer grids increase loading and

ence total run-time, we recommend to use as coarse meshes as

ompatible with the resolution of the meso- and macroscopic phe-

omena of interest. Furthermore, they are much less demanding

ith regard to memory consumption than geometries with huge
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Fig. 25. RAM usage for LES and rCFD cases. Too fine meshes and small sampling 

steps cause an excessive memory consumption of rCFD. Details are provided in 

Table 5 . 
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ell numbers as illustrated in Fig. 25 . In such cases, RAM could eas-

ly become the limiting factor. 

. Conclusion and outlook 

In this work, we have demonstrated the application of rCFD to

pecies transport in the turbulent flow after a circular cylinder at

e = 3900 and compared it with a detailed LES which we validated

gainst experimental and numerical data. The good agreement of

ime-resolved and -averaged species profiles between rCFD and

ES shows that already short time series of the velocity field con-

ain most of the relevant information required for long-term stud-

es if reappearing patterns prevail and smallest-scale structures are

ot of interest. We stress that recurrences within some tolerance

which will ultimately affect the obtained accuracy) are sufficient

nd no strict periodicity is needed, which would make the whole

rocedure trivial. Elsewhere [74] , one of us demonstrated that not

ven a clearly dominating frequency as f vs is necessary to construct

 proper recurrence process. 

The obtained speed-ups of more than 120 at 1/20 of the re-

uired computer power originated from various sources. Most im-

ortantly, rCFD only solves the passive transport equation but nei-

her that for velocity nor that for pressure. Consequently, meshes

ay be much coarser and time steps larger than for LES. More

pecifically, we employed three different computational grids with

, 8 and 15 times less cells as well as a time step 5 times greater

han for LES. The database loading time and memory consumption

f rCFD, which could have otherwise easily become bottlenecks,

ere reduced by increasing the sampling time step and lowering

patial resolution, respectively. 

Since we used a relatively simple, idealized test case for our

ovel method, there are several open questions and tasks for fu-

ure investigations. Among various others, we stress two current

estrictions. Firstly, similarity of states depends on the underly-

ng norm which is chosen quite subjectively. In the case of trans-

ort in single-phase flow, it is reasonable to compare velocity

elds with each other, but the situation becomes more compli-

ated for multiple phases. Is velocity alone still a good indicator

r should one rather contrast local volume fractions or combina-

ions thereof? Secondly, we considered completely passive species

ransport that did not affect the velocity field. However, many

low, long-lasting processes alter the fluid dynamics gradually or

bruptly. Heat transfer or chemical conversion can change density

r viscosity, which in turn will impact the flow. For such scenarios,

t will be necessary to create more than a single database corre-

ponding to different parameter settings and interpolate between

hem [51] . 
In summary, we can state that rCFD significantly reduced the

omputational costs for the investigated case. For the finer two

rids, the results agreed very well with the full simulation, and

nly for the coarsest mesh, we found slight differences, which we

egard as an indicator for the lower resolution limit of our simu-

ation. Taken all together, this makes us optimistic that rCFD can

e a useful method for fast long-term studies of turbulent flows.

e are convinced that eventually, it will be applicable not only to

assive, single-phase but to coupled, multi-phase problems. 
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