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 A B S T R A C T

The lateral distribution of bubbles rising in plumes is determined by the lift force induced on the bubbles. The 
lift force is exerted due to the presence of vorticity in the immediate vicinity of the bubble. Here, we have 
proposed a new approach to describe how the interface deformation governed by the surface tension force 
contributes to the vorticity generation near the bubble, subsequently leading to the lift force’s emergence. Using 
the vorticity transport equation, we compute the vorticity generation rate due to the bubble deformation, and 
compare it to the bubble lateral acceleration, which is a representation of the lateral forces acting on the 
bubble. Using the interface-resolved volume of fluid (VOF) method, we have simulated single bubbles rising 
in both stagnant liquid, and under the influence of a background shear flow. Bubbles with different sizes were 
simulated inside various liquid media, corresponding to a wide range of Eotvos numbers (0.55 < Eo < 5.96) and 
Morton numbers (−10.5 < 𝐿𝑜𝑔Mo < −3.8). Results disclose a consistent match between vorticity generation 
rate due to the bubble deformation and the lateral force induced on the bubble on both freely-rising condition 
and rising with presence of a background shear. This theory implies a physical interconnection between these 
phenomena which not only describes the zigzag movements of bubbles when rising freely, but also explains the 
direction change of bubble lateral migration in shear flows. The findings hold a direct implication in defining 
a universal lift force model for describing bubble lateral movements.
1. Introduction

Bubbly plumes and bubble columns are among the most important 
multiphase flows that are widely used directly in numerous indus-
trial processes and applications. Examples include but are not limited 
to bubble column reactors, wastewater treatment, and metallurgical 
plants. One of the most important uses in metallurgical industries is 
the argon curtain bubbly plume used in steel production for delivering 
flotation of non-metallic inclusions (NMI) (Zhong et al., 2006). There-
fore, in-depth understanding of bubbly plume characteristics such as 
bubble size, flow regime, bubble coalescence and breakup, and liquid 
mixing is essential to deliver a robust process outcome (Zhang and 
Taniguchi, 2000; Mirsandi et al., 2020). The behavior and flow regime 
of the bubble plume is dictated by a force called the lift force (Shu 
et al., 2019), therefore it is essential to have a thorough understanding 
and definition of the lift force to predict the radial void fraction and 
flow regime of the plume. The lift force is defined as perpendicular 
to the direction of bubbles movement trajectory, which is usually up-
wards under the influence of buoyancy force (Legendre and Magnaudet, 
1998). According to previous studies, this lateral lift force is a result 
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of a rotational background flow which the bubble is rising in Mudde 
(2005). Two of the most practical and fundamental cases that represent 
bubbles rising in a rotational flow are bubbly plumes in pipe flows, 
which generally have a Poiseuille velocity profile, and bubbles rising 
in a simple linear shear flow. In addition, the relative velocity between 
the bubble and the background flow also influences the lift force. The 
lift coefficient needs to be determined to calculate the value of the lift 
force acting on bubbles. A fundamental research on evaluation of the 
lift force was carried out by Tomiyama et al. (2002). They utilized a 
moving belt to create a simple linear shear flow in a viscous dominant 
liquid (mixture of water and glycerol), and analyzed the bubble rise 
path, focusing on lateral migration of bubbles with different diameters. 
They concluded that the lift force coefficient is primarily a function 
of bubble modified Eotvos number which itself is a function of bubble 
deformation. In summary, they observed that smaller bubbles always 
move away from the high background velocity in the shear flow and 
move towards the stationary wall, and larger bubbles move towards 
the regions that have higher background velocity i.e. towards the belt 
(Tomiyama et al., 2002). The lift coefficient for smaller bubbles is 
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defined as positive, and for larger bubbles is defined as negative. In 
their formulation of lift force and lift coefficient, they lumped the effect 
of background shear and bubble wake, but no explicit investigation 
of the effect of bubble wake was done. It should be noted that since 
their experiment was conducted in a viscous dominant regime, the 
bubble path did not show considerable path instability and zigzag 
movement which makes it reasonable to focus less on the effect of 
bubble wake. In another notable research on determining bubble lift 
coefficient (Aoyama et al., 2017) studied the bubble dynamics in a low 
Morton number regime (−6.6 ≤ 𝐿𝑜𝑔Mo ≤ −3.2) using the same setup of 
Tomiyama et al. (2002). They concluded that the lift force coefficient 
cannot be solely described by a single property related to the bubble 
or the liquid, and confirmed the reversal of the sign of lift coefficient 
with bubble size increase as reported by Tomiyama et al. (2002).

In the case of a small bubble that keeps its spherical shape for high 
enough Reynolds numbers (𝑅𝑒 > 100), generation of the lift force is 
caused by the distortion of the background vorticity (present in the 
shear flow) due to the presence of the bubble. This tilting and stretching 
of the streamwise vorticity causes a concentration of vorticity very close 
to the bubble, downstream of the bubble interface. High values of the 
Reynolds number indicates that the flow could be regarded as inviscid. 
This is the reason that the actual values of the lift coefficient in the 
work of Tomiyama et al. (2002) for the case of smaller bubbles come 
close to the analytical value given by Auton (1987) for a spherical 
bubble present in an inviscid shear flow, 𝐶𝐿 = 0.5 (Legendre and 
Magnaudet, 1998). This mechanism was first introduced by Lighthill 
(1956), and Auton (1987) calculated the value of the lift force caused 
by this mechanism. Therefore, it is called the Lighthill or L-mechanism 
(Hidman et al., 2022). When a spherical bubble is rising in a low 
Reynolds number shear flow, the lift force is still induced due to the 
presence of vorticity at the immediate vicinity of the bubble (Legendre 
and Magnaudet, 1998). A background shear flow causes asymmetric 
advection of the shear-free generated vorticity and its asymmetric 
distribution around the bubble. This is called the Saffman mechanism. 
Saffman derived the analytical solution of the lift force induced on a 
rigid spherical particle in a viscous flow (Saffman, 1965), which later 
on was used to explain the lift force induced on a spherical bubble in a 
low Reynolds number liquid (Legendre and Magnaudet, 1998). In this 
case, the lift coefficient of the spherical bubble is a function of bubble 
Reynolds number and the dimensionless shear rate, and generally has 
positive values. If the bubble has a high Reynolds number it will have 
a lift force coefficient of 𝐶𝐿 = 0.75 in the beginning of its rise which 
will later on decrease to the famous 𝐶𝐿 = 0.5 after reaching a steady 
state.

Bubble movement in liquids like water which have relatively low 
viscosity and/or high surface tension is a lot more complex, especially 
when the bubble size becomes larger. Bubbles rising in surface tension-
inertial force dominant regimes exhibit zigzag and spiraling trajectories 
with or without the presence of a background shear flow (Lee and 
Lee, 2020; Mougin and Magnaudet, 2002). A fundamental study carried 
out in a non-viscous dominant liquid is the study of Ziegenhein et al. 
(2018). They investigated air bubbles in water (low Morton num-
ber system) with a background shear induced by an adjacent bubble 
plume, and proposed a lift model as a function of the modified Eotvos 
number. In a more recent study using the same experimental setup, 
Hessenkemper et al. (2021) measured the bubble and liquid velocity 
simultaneously, and included two effects in their improved lift force 
coefficient: (i) shear rate as a function of dimensionless shear rate (𝑆𝑟) 
and Reynolds number (Legendre and Magnaudet, 1998), and (ii) bubble 
deformation as a function of modified Eotvos number. Reversal of lift 
force for larger bubbles was also reported in these works, indicating 
that sign change of the lift coefficient happens essentially due to bubble 
deformation and its subsequent vorticity generation.

According to Adoua et al. (2009), the sign change of the lift co-
efficient happens due to higher vorticity generation on the bubble 
interface with increasing bubble deformation. With increasing bubble 
2

size, bubbles tend to deform from the spherical shape, Especially in low 
Morton number liquids. They concluded that the tilting and stretching 
of the vorticity generated at the bubble surface due to the shear-free 
condition of the gas-liquid interface creates a pair of counter rotating 
vortices downstream of the bubble, which causes the emergence of the 
lift force and a sign change in the presence of a background shear. Other 
related studies such as Mougin and Magnaudet (2002) and Magnaudet 
and Mougin (2007) have connected the oscillations in the bubble rise 
path to the bubble deformation and an increase in surface vorticity. 
They also reported that the rise path starts becoming unstable when 
a pair of counter rotating vortices appear behind the bubble. These 
vortices are rooted in the advection of the surface generated vorticity. 
In these studies, bubble shape was kept fixed and a deformation factor 
was prescribed for the bubbles. This means that the bubbles simulated 
in these studies where symmetrical ellipsoids having larger horizontal 
axis.

Among all of the lift formulations available in the literature, only 
a few have considered the vorticity at the immediate vicinity of the 
bubble in their lift coefficient formulations, and almost all of the DNS 
works have used bubbles having rigid shapes. Recently, in the work of 
Hayashi et al. (2020), it has been proven that the lift force acting on 
a bubble is essentially a result of the vorticity on the bubble surface. 
Just as it has already been proven previously in the literature that 
the drag force relates to the layer of vorticity residing on the bubble 
surface. Hayashi et al. (2020) used the functional form of the maximum 
vorticity production at the bubble interface provided in the work of 
Magnaudet and Mougin (2007), which correlates with deformation, and 
the functional form of drag coefficient formulation (Moore, 1965). They 
explained the relation of this drag coefficient to the maximum vorticity 
on the bubble surface, and subsequently to the bubble deformation in a 
viscous dominant flow regime. Then, using a function that they defined 
which relates the lift coefficient to the drag coefficient, they deduced a 
formulation for the lift force which is a function of the surface vorticity 
and bubble deformation. Using the same strategy, Hayashi et al. (2021) 
and Lee and Lee (2020) derived the lift coefficient as a function of 
surface vorticity for the surface tension dominant flow regime. In the 
work of van der Linden (2022), they have computed the magnitude 
of the boundary layer vorticity concentrated in a thin layer on the 
bubble surface i.e. one mesh cell thickness, and its compliance with 
the lateral forces imposed on the bubble in two different reference 
frames. Then, they have defined a new lift force coefficient based on the 
relation between this vorticity and the calculated lateral lift force. Their 
calculation, however, resulted in only positive values for the vorticity 
around the bubble. In contrast, the lateral lift forces obtained from their 
DNS revealed an oscillating pattern with both negative and positive 
values, which could not be effectively diagnosed. Hidman et al. (2022) 
in a comprehensive work investigated the vorticity values in a volume 
control around the bubble, and defined lift force coefficients for every 
single mechanism mentioned in their paper. Subburaj et al. (2023) also 
defined a lift coefficient based on the vorticity of the background shear 
and the gas volume fraction distribution using CFD-DEM simulation 
iterations and comparing the data to their experiments.

After a thorough search of the literature, it is evident that an 
investigation into the bubble lateral movement based on the general 
vorticity transport equation is lacking. More specifically, a study that 
ponders on vorticity generation rate by the bubble deformation, and 
its connection to the lift force is missing in the literature. Most of 
the aforementioned research that consider the bubble-generated vor-
ticity in their lift coefficients use models and functions that determine 
this bubble-generated vorticity by estimations. Other methods that 
use spatial integration on mesh cells inherently have errors regarding 
accurate vorticity layer thickness that may cause acute errors in the 
vorticity and lift calculations. In addition, when averaging the vorticity 
in the mesh cells, it is not possible to differentiate between surface-
generated vorticity, and the vorticity of the flow field caused by the 
liquid displacement due to bubble non-linear dynamics, or the vorticity 
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of the background shear and its advection around the bubble. In this 
study, we explain the bubble lateral movement based on the transport 
equation of vorticity, especially based on the surface tension term, 
while the bubble shape is free to change and oscillate. First, bubbles 
rising freely in different liquid media are analyzed and the relation 
between deformation-induced vorticity production term and lateral 
acceleration is investigated. Doing so will shed light on the forces 
applied on the bubble which are perpendicular to the rise path. Next, 
bubbles rising in a background shear flow are analyzed from the same 
perspective, with the insights achieved from the freely-rising cases. 
This will help to unravel a general mechanism for the lift force on the 
bubble based on the concept of vorticity, and independent of the liquid 
properties. A universal description like this is essential for developing 
closure force models in the context of Eulerian-Lagrangian methods that 
enable efficient simulations of bubbly plumes.

2. Theory and research methodology

2.1. Theoretical concept

To describe the hydrodynamics of single bubble motion in liquid it 
is a common practice to consider the governing equations of immis-
cible liquid-gas flows with one-fluid formulation. This comprises the 
continuity and Navier–Stokes equations for the mixture: 
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0 (1)

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖𝒖) = −∇𝑝 + ∇ ⋅ 𝝉 + 𝐅𝑖 + 𝐅𝜎 (2)

where 𝒖 is the fluid velocity shared between the liquid and gas phases, 
𝑝 is the pressure, and 𝝉 is the stress tensor which for a Newtonian 
fluid with no compressibility effect is defined as 𝝉 = 𝜇

(

∇𝒖 + ∇𝒖⊤
)

. 
𝐅𝑖 is the sum of external and conservative forces e.g. the gravity, and 
𝐅𝜎 is the surface tension force induced on the gas-liquid interface. 
In these equations, the material properties are assumed as arithmetic 
mean between the ones of each phase using a weighted volume average 
phase indicator function, 𝛼. Therefore, the density and viscosity read 
𝜌 = 𝛼𝜌1 + (1 − 𝛼)𝜌2 and 𝜇 = 𝛼𝜇1 + (1 − 𝛼)𝜇2, respectively. This entails 
an additional transport equation to track and determine this indicator 
function. 
𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼𝒖) = 0 (3)

Tracking the interface between liquid and gas is also essential for 
determining surface tension force by the Continuous Surface Force 
(CSF) method (Brackbill et al., 1992). This approach defines the surface 
tension as 𝐅𝜎 = 𝜎𝜅 𝐧̂𝛿𝑠, and connects it to the derivatives of phase 
indicator function because 𝐧̂ = ∇𝛼

|∇𝛼|  is the interface normal vector and 
𝜅 = −∇ ⋅ 𝐧̂ is the interface local curvature.

While this set of equations is able to describe the hydrodynamics 
of any liquid-gas flow, in order to delve deep into the of lift force 
phenomenon based on the concept of vorticity and provide a physical 
understanding of the underlying mechanisms, a perception of the lift 
force formulation is still needed.

By examining the general formulation for lift force on a moving 
object in fluid e.g. bubble (Auton, 1987): 
𝐹𝐿 = −𝐶𝐿𝜌L𝑉𝑏(𝐮𝐛 − 𝐯) ⋅ (∇ × 𝐯) (4)

where 𝐮𝐛 is the bubble velocity, and 𝐯 is the surrounding liquid velocity, 
it is evident that the magnitude of the lift force is proportional to the 
vorticity of the rotational flow. According to previous studies, in a 
given reference frame (Fig.  1), the 𝑧-component of the vorticity field 
corresponds to the lateral lift force imposed on the bubble in 𝑥-direction 
that is rising upwards towards 𝑦-direction. Applying this understanding 
derived from previous studies, the 𝑧-component of vorticity generated 
by the bubble deformation forces is correlated with lateral bubble 
acceleration, which is the representative of the lift force in 𝑥-direction, 
3

Fig. 1. Definition of lift force (𝐹𝐿) imposed on the bubble perpendicular to the 
buoyancy force (𝐹𝐵) in 𝑥𝑦-plane, and the flow streamlines past a deformed rising 
bubble. Vortical structures generated by the bubble movement explain positive flow 
rotation (𝜔𝑧 > 0) (green), and negative flow rotation (𝜔𝑧 < 0) (red).  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

to find the interconnection between them. It has to be emphasized 
that our analysis of the theory remains valid regardless of the chosen 
dimensional orientation. This means that the analysis and the results 
are consistent whether we observe the bubble from 𝑥𝑦- or 𝑧𝑦-plane. The 
physical interconnection between the vorticity and the tallying lateral 
acceleration remains the same.

Due to higher surface tension in lower Morton number liquids, 
vorticity generation on bubble surface is higher, and lower liquid 
viscosity results in less damping effect on this vorticity generation, 
and wobbliness of the bubble. This can be apprehended by taking a 
look at the general transport equation of vorticity (𝝎 = ∇ × 𝒖) in 
multiphase flows which includes an interface between a gas and liquid 
phase (Magnaudet and Mercier, 2020) 
𝐷𝝎
𝐷𝑡

= (𝝎 ⋅ ∇)𝒖
⏟⏞⏟⏞⏟

vortex stretching
+∇ ×

(

−
∇𝑝
𝜌

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
baroclinic effect

+ ∇ ×
(

1
𝜌
∇ ⋅ 𝜏

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
viscous dissipation

+ ∇ × ( 1
𝜌
𝐅𝜎 )

⏟⏞⏞⏞⏟⏞⏞⏞⏟
surface tension

(5)

The first term on the right hand side, which is the vortex stretching 
term, is responsible for advecting the vorticity downstream of the 
bubble movement. This downstream advection of the vorticity results 
in generation of wakes behind the bubble. The second term represents 
the vorticity generation due to misalignment of density and pressure 
gradients present in the flow. The third term on the right hand side is 
the curl of the stress tensor, which represents the diffusive term. This 
term which generally possesses negative values, is responsible for the 
dissipation of vorticity by viscous forces. The last term is the curl of the 
surface tension force that exists at the gas-liquid interface (Magnaudet 
and Mercier, 2020), which after expansion, contains terms that vanish 
due to the alignment between the density gradient vector (∇𝜌) and 
the volume fraction gradient vector (∇𝛼) as well as the fact that the 
curl of a gradient of a scalar is zero. For a complete explanation of 
this derivation, we refer to Hasslberger et al. (2018). Finally, this term 
reduces to: 
𝝎̇𝑠 =

𝜎
𝜌
∇𝜅 × ∇𝛼 (6)

Obviously, this vorticity generation mechanism only relates to the 
misalignment between the gradient vectors of the local interface curva-
ture and volume fraction (Hasslberger et al., 2018; Saeedipour, 2023). 
In other words, this vector quantity describes the rate of vorticity 
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variation by the geometrical change and deformation of the bubble 
surface. Thus, in low Morton number liquids, when the bubble shape 
deforms and heavily deviates from the perfect spherical shape, this term 
becomes non-zero, and the generation of vorticity at the immediate 
vicinity of the bubble should not be neglected. Only when the bubble 
retains its perfectly spherical shape (or close to sphere) these effects can 
be disregarded. Similar to other terms in Eq.  (5), 𝝎̇𝑠 has the physical 
unit of [T−2], and when integrated component-wise along with the bub-
ble interface, it determines the instantaneous contribution of interface 
geometry to vorticity production or destruction in that direction. Thus, 
its correlation with the rate of change in the bubble lateral motion 
i.e. acceleration could constitute a direct physical connection between 
bubble deformation and the lift force.

To realize this connection, we adopt an integration algorithm along 
with the bubble interface and calculate Eq.  (6) in a subdomain near 
the bubble surface. What is meant by subdomain here, is the thin layer 
of gas-liquid interface. We analyze the subdomain-averaged values of 
this term in the direction perpendicular to the bubble rising path 
i.e. ⟨𝜔̇𝑠,𝑧⟩ = 1

 ∫ 𝝎̇𝐬,𝑧 d𝑣, and base our discussion on its temporal 
variation in comparison with the lateral acceleration of the bubble 
(𝐚𝑥 =

d𝐮𝐛,𝑥
d𝑡 ). The latter is computed by tracking the velocity of the 

bubble center of mass (𝐮𝐛) in time, and holds the physical unit of 
[L T−2]. It is needless to mention that this theoretical concept can be 
tested by analyzing accurate geometrical details of three-dimensional 
bubble rising motion that could be obtained by high-fidelity numerical 
simulations (such as VOF method) or 3D reconstruction of bubble shape 
from high resolution experimental images.

2.2. Interface-resolved numerical simulation

In this study, we have obtained the necessary data for analysis of 
rising bubbles by conducting interface-resolved numerical simulations 
using the volume of fluid (VOF) method that solves the discretized 
forms of Eqs. (1) to (3) using the finite volume method. We have sim-
ulated single bubbles with different Eotvos numbers rising in stagnant 
and sheared liquids with different Morton numbers. For these simu-
lations, we have utilized the geometrical VOF solver in open-source 
software OpenFOAM known as isoAdvector method (Roenby et al., 
2016), that uses a two-step reconstruction-propagation operation based 
on the iso-surface of the volume fraction. This method is implemented 
in the solver interIsoFoam. Particularly, in the context of rising gas 
bubble simulation, the study of Gamet et al. (2020) has shown that 
this approach provides a very accurate curvature calculation and sig-
nificantly reduces the spurious currents. In addition, for some cases that 
are explained later, we also employed the algebraic VOF solver of in-
terFoam. Through appropriate discretization and providing sufficient 
spatial resolution, these solvers can perform reliable interface-resolved 
simulations, as demonstrated in our previous studies (Saeedipour et al., 
2021; Mahmoudi et al., 2024). The transient terms in the equations are 
discretized using a first-order implicit (Euler) scheme in both of these 
solvers. The convection term in the momentum equation is discretized 
with a Gauss linear scheme. For the convection of the phase fractions 
in the VOF equation, the Gauss vanLeer scheme is employed. Lastly, 
the diffusion term is discretized using the Gauss Linear Corrected 
scheme. For calculating the volume fluxes and reconstructing the inter-
face, interIsoFoam uses the Piecewise Linear Interface Calculation 
(PLIC), which eliminates the spurious currents sometimes created at 
the interface (Meier et al., 2002). Nevertheless, to conduct numerical 
simulation for a range of bubble sizes with sufficiently long rising path, 
the spatial resolution remains a limiting factor. Particularly, for bubbles 
with diameter of 2 mm or smaller, a large number of fine grid cells were 
to be used that would have made the simulations computationally unaf-
fordable. Additionally, the adaptive mesh refinement (AMR) technique 
that is provided in OpenFOAM software is not fully compatible with the 
isoAdvector interface detection techniques in interIsoFoam solver. 
To the authors best knowledge, there is no simple solution to bypass the 
errors of AMR when used in interIsoFoam. Thus, for the cases that 
small bubble sizes were simulated, interFoam combined with AMR 
was used.
4

2.3. Simulation setup

The numerical domain defined in this study is a 3D rectangular box 
with 𝐿 × 𝐿 ×𝐻 = 40 mm × 40 mm × 400 mm as depicted in Fig.  2. The 
bubble is free to rise in the domain, meaning no axisymmetric boundary 
condition was used in the simulations, and the gas-liquid interface is 
free to change its shape and oscillate. For the boundary conditions, free 
slip is selected for the walls to reduce the effect of wall presence. A 
pressure outlet boundary condition is selected for the top wall of the 
rectangular box.

The domain is discretized with isotropic hexahedral mesh cells with 
uniform size throughout the domain. According to the quantitative 
benchmarks provided by Adelsberger et al. (2014) for 3D simulations 
of bubbles and droplets rising under the influence of buoyancy force 
in liquid media, OpenFOAM is able to capture the bubble dynamics in 
terms of shape deformation and terminal rise velocity with a minimum 
mesh resolution of 16 cells per bubble diameter. In this study, a 
minimum mesh resolution of 25 mesh cells per bubble diameter is used 
(𝐷𝑏∕𝛿 = 25) when simulating on uniform grids with interIsoFoam. 
In the cases that AMR is employed for simulating the smaller bubble, 
the domain mesh size has an initial scaling of 4 with bubble diameter. 
Then, with three levels of mesh refinement inside and around the 
bubble interface, the mesh resolution 𝐷𝑏∕𝛿 = 32 is achieved in the 
area surrounding the bubble. Since in the beginning of the simulation 
the bubble is introduced as a sphere, a test of sphericity, originally 
suggested in the work of Wadell (1935), was performed. The result of 
this test showed an error value of less than 0.4% which proves that 
these OpenFOAM simulations can be regarded as a good representation 
of a sphere. Furthermore, a mesh dependence study was conducted 
(not presented here) to examine the accuracy of the AMR for the small 
bubble based on the terminal rise velocity, and the results for the 
𝐷𝑏∕𝛿 = 32 show terminal rise velocity values almost exactly the same as 
it has been reported in the book of Clift et al. (1978). In the cases that 
the effect of shear flow is studied, the same configuration presented in 
Fig.  2 is further adapted with a linear shear defined from the bottom 
plane, and the simulation is run until the whole domain has a fully 
developed shear profile. The shear rate induced on the domain in all of 
the cases is defined as 6.25 s−1 throughout the whole domain.

According to the literature, there are four different mechanisms and 
flow regimes that dictate the bubble lateral movement in a shear flow. 
These mechanisms are categorized by the bubble Eotvos number (Eo 
= 𝑔(𝜌𝑙 − 𝜌𝑏)𝐿2

𝐶∕𝜎) and Galilei number (Ga = 𝜌𝑙
√

𝑔𝐿𝐶𝐿𝐶∕𝜇𝑙) (Hidman 
et al., 2022), where 𝜌𝑙 and 𝜌𝑏 are the liquid and bubble densities, 
respectively. Also, 𝐿𝐶 is the bubble characteristic length which is the 
spherical equivalent diameter, 𝜎 is the liquid surface tension, and 𝜇𝑙 is 
the liquid viscosity. In this study, the ranges of Eo and Ga are defined 
by the variation of liquid properties such that all of the aforementioned 
mechanisms are included into the analysis. The operating conditions 
that correspond to these four mechanisms are defined as EL1, EH1, 
EL2, and EH2. As discussed formerly in this paper, an increase in 
liquid viscosity (decrease in Ga number), results in less bubble shape 
oscillation. To provide a broader image, two additional cases, EL3 and 
EH3, were also defined with lower Ga numbers for both bubble sizes 
in which bubbles show little to no shape oscillation. A summary of the 
simulation cases are listed in Table  1:

The simulation cases studied in this paper are also shown in the so-
called Grace diagram (Clift et al., 1978) in Fig.  3. As the cases defined 
here cover a wide range of operating conditions from low Morton 
number regimes like air/water operating conditions, to more viscous 
dominant and high Morton number flow regimes, we aim to bridge the 
gap between different studies available in the literature, and provide 
base for a general understanding for the lift force.

To provide further validation, we have also calculated the lift force 
coefficients of the simulated bubbles similar to the method used in Lee 
and Lee (2020) using the bubble trajectories. We compare these values 
with the data and correlations for different conditions investigated in 
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Fig. 2. Schematic view of the computational domain with the bubble in the center of 
the box subject to buoyancy-driven rising motion. For cases that are simulated with 
the presence of background shear, the shear flow profile is shown in blue dashed lines. 
(For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 3. Demonstration of the simulation cases on the Grace-diagram. The diagram, 
retrieved and adapted from Clift et al. (1978), highlights the simulation cases as red 
markers.  (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
5

Table 1
The description of simulation cases with the range of bubble dimensionless numbers of 
Eo and Ga. In all simulated cases, the surface tension coefficient is kept constant with 
the value 𝜎 = 0.071 N/m. Reynolds number is calculated for cases with background 
shear.
 𝑑𝑏 (mm) 𝜇𝑙 (Pa s) Eo Ga Re 𝐿𝑜𝑔Mo 
 EL1 2 1.0518 × 10−3 0.55 266.3 380.3 −10.47 
 EH1 6 1.0518 × 10−3 4.97 1383 1547.2 −10.47 
 EL2 2 1.0518 × 10−2 0.61 29.30 29.97 −6.51  
 EH2 6 1.0518 × 10−2 5.47 152.24 171.27 −6.51  
 EL3 2 5.25 × 10−2 0.66 6.65 6.6 −3.82  
 EH3 6 5.25 × 10−2 5.96 34.58 35.3 −3.82  

Fig. 4. Comparison of the lift coefficients with the data and correlation from literature. 
The data are retrieved from the corresponding plots published in Hayashi et al. 
(2021) using graph data extraction: green markers denote predicted values by the 
simulation cases in the present study (Table  1), empty markers denote the lift 
coefficients obtained by different experimental data. Lowest Morton numbers represent 
air–water experiments of Hessenkemper et al. (2021) and the dotted line is the lift 
coefficient correlation derived for air–water systems from Hayashi et al. (2021).  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

the literature. Fig.  4 presents this comparison with the extracted data 
from the works of Hayashi et al. (2021) and Hessenkemper et al. (2021) 
for the same Morton numbers in our study. This comparison reveals 
a very good agreement with the experimental data and provides a 
verification for the simulation data in this study.

3. Results and discussion

3.1. Freely rising bubbles

At first, the results of freely rising bubbles are presented and an-
alyzed in detail. We base our discussion on two sets of results for 
all the simulation cases: (i) bubble rise path in the 𝑥𝑦-plane, and (ii) 
the vorticity/acceleration plots that follows the theoretical concept 
presented in sub- Section 2.1. For the former, we track the bubble 
center of mass, and for the latter, the bubble lateral acceleration (𝐚𝑥) is 
computed by the time derivative of the lateral velocity of bubble center 
of mass. The bubble lateral velocity is extracted by integrating the 
velocity components from the finite volume cells containing gas phase 
i.e. 𝛼 ≠ 0, and reads 𝐮𝐛,𝑥 = ∫ 𝛼 𝒖𝑥 d𝑣

∫ 𝛼 d𝑣 . Furthermore, the deformation-
induced vorticity rate, 𝜔̇𝑠,𝑧, is computed locally for each finite volume 
cell based on Eq. (6), and then integrated for the cells around the bub-
ble. It has to be noted that for the sake of comparison both quantities 
are normalized by the maximum values obtained for the larger bubble 
with the same properties in the air/water system, and result in ⟨𝜔̇ ⟩

∗

𝑠,𝑧
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Fig. 5. An instantaneous 3D snapshot of a air bubble freely rising in stagnant water 
corresponding to the case EH1. The bubble is visualized by iso-surfaces of 𝛼 = 0.5, 
with vortical structures downstream of the bubble colored by the vorticity component 
in 𝑧-direction.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

and 𝐚∗𝑥 that are compared with each other for every simulated case. This 
makes the comparison more meaningful as the effect of bubble size is 
also included in the amplitude of the oscillations. An instantaneous 3D 
snapshot of the bubble rising throughout the stagnant liquid, generating 
vortical structures in its rise path is presented in Fig.  5.

Fig.  6 presents the detailed results for EL1 and EH1 which are the 
cases of a small and a large bubble with characteristic diameters of 
2 mm and 6 mm, respectively, in water. As Fig.  6(a) demonstrates, the 
bubble reveals slight oscillation in its rising path through the liquid. 
Vorticity generation rate due to deformation, plotted in Fig.  6(b), also 
appears to have oscillating values around zero. It is evident that the 
oscillation pattern of the lateral acceleration follows the same pattern of 
the vorticity generation rate. Fig.  6(c) & (d) demonstrate the same plots 
for the EH1. In these plots bubble zigzag movement is also prevalent, 
with the amplitude of the zig-zags being larger than EL1. Fig.  6(d) 
illustrates the strong correlation between vorticity generation rate and 
the lateral acceleration of the bubble, with much higher amplitudes 
compared to those of EL1.

One observation worth mentioning is that even though the accel-
eration follows the same pattern of ⟨𝜔̇𝑠,𝑧⟩, it seems to have a dilatory 
behavior. Later, we will demonstrate that this observation holds true 
across each vorticity and acceleration plot presented in this paper. 
This delay between 𝜔̇𝑠 and acceleration show that first the vorticity 
is being generated by the act of surface deformation, and then this 
is turned into the lateral acceleration i.e. lift force. Although this 
trend was also mentioned in the work of van der Linden (2022) as a 
possible reason for the mismatch in their force model verification, their 
additional results on the temporal variation of the lift force indicate 
the opposite behavior, probably because they calculated the vorticity 
magnitude (‖𝝎‖) around the bubble and not its production rate i.e. ⟨𝝎̇⟩. 
Conversely, our approach examines vorticity production in the vicinity 
of the bubble by emphasizing its rate, which reveals a meaningful 
physical interconnection to the acceleration, as both quantities scale 
with 𝑠−2.

As explained in Eq.  (6), deformation-induced vorticity generation 
rate is due to the misalignment between curvature gradient and volume 
fraction gradient. Since the surface tension coefficient of the liquid in 
all cases is similar, the larger magnitude of ⟨𝜔̇𝑠,𝑧⟩ in EH1 implies a 
higher degree of bubble deformation that is attributed to the increased 
bubble size. This is also confirmed by the bubble surface area plot and 
instantaneous snapshots of the 3D bubble shapes provided in Fig.  7. 
The bubble surface area is extracted from the volume fraction fields 
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as 𝐀𝐛 = ∫ 𝛿𝑠 d𝑣, with 𝛿𝑠 being Dirac delta function approximated 
by ‖∇𝛼‖ (Saeedipour and Schneiderbauer, 2022), and is normalized 
by the surface area value at the beginning of the simulation, 𝐀𝟎 =
𝜋𝑑2𝑏 , which is the analytical value for a sphere. Since for the same 
volume, the sphere has the smallest surface area compared to any other 
arbitrary geometrical shape, an increase in the 𝐀𝐛 means deforming 
from the initial spherical shape. The bubble shape in EL1 at most of 
the times is close to a simple, slightly damped, spheroid, with small 
wobblings and deformings from this state. This can be considered 
as less deformation compared with the bubble shape of EH1 which 
shows a more arbitrary ellipsoidal shape with high amplitudes of shape 
deformation and wobbling behavior.

In EL2 and EH2, for the same bubble sizes of 2 mm and 6 mm, 
the viscosity of the surrounding liquid is increased resulting in 𝐿𝑜𝑔Mo 
= −6.5, and corresponds to a liquid mixture of 60% glycerol/water 
solution. According to the Grace diagram in Fig.  3, it is expected that 
the bubble in EL2 would have a spherical shape, and the bubble in 
EH2 would have less wobbling behavior. The rise path trajectory of EL2 
presented in Fig.  8(a) shows infinitesimal zigzag movement. Vorticity 
generation rate and bubble lateral acceleration presented in Fig.  8(b) 
both show values close to zero, and the overall plot shows a flat line. 
This is due to the fact that the bubble retains its spherical shape along 
the rise path as a consequence of small volume (low Eo), and the 
high viscosity of the liquid that is keeping the bubble confined in its 
spherical shape. A 3D snapshot of the bubble shape is provided in Fig. 
8(a).

For the larger bubble in the same liquid viscosity, case EH2 shows a 
different rise path compared to EL2. It shows steady rising behavior at 
first, and then shows zigzag movement of the bubble at almost halfway 
through the domain. By looking at the vorticity generation and lateral 
acceleration plots, it can be seen that also in the beginning vorticity 
generation shows a flat line with values equal to zero. After the bubble 
gains enough momentum due to buoyancy force, it starts to wobble and 
generate vorticity. A brief look at the bubble shape throughout the rise 
path in Fig.  8(c), can also prove this point: the lateral force imposed on 
the bubble indicated by the lateral acceleration is initiated by the start 
of the vorticity generation due to deformation.

Increasing the liquid viscosity to even higher values around 𝜇𝑙 =
0.05 to simulate a 80% mixture of glycerol/water solution with 𝐿𝑜𝑔Mo 
= −3.8 results in even more damping of the surface deformation and 
wobbliness of the bubble. According to the Grace diagram, with this 
viscous dominant flow not only the smaller bubble in EL3, but also the 
larger bubble in EH3 is expected to have very low wobbling behavior. 
The bubble rise path and vorticity/lateral acceleration plots for the 
smaller bubble in EL3 is almost exactly the same as plots for EL2, and 
therefore are not provided here to prevent repetition. In EL2, the lateral 
bubble acceleration plots show values close to zero. This is also aligned 
with the ⟨𝜔̇𝑠,𝑧⟩

∗ that yields nearly zero values at all times, illustrating 
a flat line. However, in EH3, the bubble shape is a symmetrical oblate 
spheroid with almost no shape oscillation and wobbling as displayed 
in Fig.  9(a). This symmetrical shape results in equal values for 𝜔̇𝑠,𝑧
with opposite signs at regions on bubble surface with high curvature 
gradient near the bubble tips, thus the integration of the local vorticity 
rates results in zero (i.e. ⟨𝜔̇𝑠,𝑧⟩ ≈ 0). This puts the bubble in a force 
equilibrium state, meaning no lateral movement would be observed. In 
contrast, in EH2 even though the bubble shape is close to an oblate 
spheroid, but after a while it starts to oscillate and deform from the 
symmetrical spheroid state, and this is the reason that the average 
vorticity generated by the interface has non zero values compared to 
EH3, and the lateral force imposed on the bubble has oscillating values 
causing the bubble to have zigzag movements throughout its rise path.

3.2. Bubbles rising in the presence of background shear

In the remainder of the paper, we investigate the bubble rise behav-
ior in the presence of a background shear. The aim of this investigation 
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Fig. 6. Analysis of the cases EL1 (top row) and EH1 (bottom row) when freely-rising: bubble rise path in 𝑥𝑦-plane (left column), and temporal variation of normalized vorticity 
rate ⟨𝜔̇𝑠,𝑧⟩

∗ ( ) and lateral acceleration 𝐚∗𝑥 ( ) (right column).
Fig. 7. Normalized bubble surface area for EL1 ( ) and EH1 ( ), and random 
instantaneous snapshots of bubble shapes.

is to analyze the effect of shear on the observed compliance between 
lateral acceleration deformation-induced vorticity generation, and if 
it still explains the transverse migration of the bubbles even in the 
presence of the shear. Therefore, all the simulated cases are once again 
simulated in a domain with a linear shear profile as schematically 
shown in Fig.  2.

It is discussed in the introduction that when bubble is able to keep 
an ideal spherical shape, the shear flow causes the bubble to travel 
to the regions of lower velocity (e.g. pipe wall in the case of bubbly 
pipe flow.). In these cases, whether the bubble is moving through a 
high Morton number liquid (Saffman, 1965; Legendre and Magnaudet, 
1998), or an ideal inviscid flow with low Morton number (Lighthill, 
1956; Auton, 1987), the lift force is derived analytically. These analyt-
ical expressions are also validated by the abundant experimental and 
numerical DNS studies in the literature. Recent studies have defined 
lift models that generally are composed of two main terms; i.e. 𝐹𝐿 =
𝑓 (𝑆𝑟) − 𝑓 (𝐷𝑒𝑓 ) (Hessenkemper et al., 2021; Lee and Lee, 2020). The 
first term corresponds to the effect of the background shear on the 
lateral movement on the bubble, which causes the bubble to move 
to the regions with lower background velocity. The second term is a 
function of bubble deformation, and reverts the sign of the lift force. By 
increasing bubble deformation, the value of this function also increases, 
thus it will contribute more to the total calculated lift force imposed on 
the bubble.

In our simulations, the cases that the bubble has an ideal spherical 
shape are EL2 and EL3. As a representative, the bubble rise path of 
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EL2 is shown in Fig.  10(a). The bubble path shows a linear rise tilted 
towards the left side of the domain, which is the region with lower 
background velocity. In Fig.  10(b), it is evident that vorticity generation 
due to deformation has little to no effect on the lateral forces imposed 
on the bubble, as ⟨𝜔̇𝑠,𝑧⟩ yields values close to zero. Thus, the only 
mechanism that induces a force on the bubble perpendicular to the rise 
path is the vorticity caused by the background shear flow.

As mentioned earlier, with a decrease in the liquid Morton number 
in EL1, the bubble becomes prone to more shape oscillation and de-
formation, resulting in more vorticity generation by the deformation. 
By examining the bubble rise path in Fig.  10(c), it is evident that the 
bubble still goes towards the region of the flow that has lower velocity, 
but the trajectory is not as linear as the EL2 and EL3. Consequently, 
the plots in Fig.  10(d) show oscillating values for ⟨𝜔̇𝑠,𝑧⟩. The overall 
trend of the bubble lateral acceleration follows the same pattern of the 
vorticity generation, having the same extrema points, but it appears 
to have a downshift towards negative values. This implies that in 
this case the vorticity generation on the bubble surface influences the 
bubble acceleration, but the dominant mechanism is the lift force that is 
exerted on the bubble by the shear flow, causing it to traverse to the left 
side of the domain, and having negative overall value for acceleration 
in 𝑥-direction.

With an increase in Eo number with increasing bubble size, 𝝎̇𝑠
increases and therefore, it will have a greater influence on the bubble 
lateral acceleration. It is observed in Fig.  11 that in the cases of EH1 
and EH2 the bubble trajectory reveals oscillatory movement towards 
the region of higher background velocity, which is inline with previous 
studies. The ⟨𝜔̇𝑠,𝑧⟩ and bubble lateral acceleration show alignments in 
terms of oscillation pattern and magnitude. Again, this alignment of 
lateral acceleration with vorticity generation rate indicates that the 
lateral force induced on the bubble is primarily influenced by 𝝎̇𝑠. EH1 
shows more chaotic behavior due to higher shape oscillation because 
of the lower Morton number of the liquid.

Nonetheless, alignment between lateral acceleration and ⟨𝜔̇𝑠,𝑧⟩ does 
not elucidate the direction change of bubble lateral migration in the 
presence of the shear. In order to shed light on this change of behavior 
with larger bubbles and clarify whether it is the shape oscillation 
that is causing this transverse migration, the case with highest liquid 
viscosity (EH3) is also simulated in the presence of background shear. 
The bubble rise path presented in Fig.  12(a) still displays bubble lateral 
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Fig. 8. Analysis of the cases EL2 (top row) and EH2 (bottom row) when freely-rising: bubble rise path in 𝑥𝑦-plane (left column), and temporal variation of normalized vorticity 
rate ⟨𝜔̇𝑠,𝑧⟩

∗ ( ) and lateral acceleration 𝐚∗𝑥 ( ) (right column).

Fig. 9. Analysis of the case EH3 when freely-rising: (a) bubble rise path in 𝑥𝑦-plane, and (b) comparison of ⟨𝜔̇𝑠,𝑧⟩
∗ ( ) and 𝐚∗𝑥 ( ).

Fig. 10. Analysis of the cases EL1 (bottom row) and EL2 (top row) in the presence of background shear: bubble rise path in 𝑥𝑦-plane (left column), and temporal variation of 
normalized vorticity rate ⟨𝜔̇𝑠,𝑧⟩

∗ ( ) and lateral acceleration 𝐚∗𝑥 ( ) (right column).
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Fig. 11. Analysis of the cases EH1 (bottom row) and EH2 (top row) in the presence of background shear: bubble rise path in 𝑥𝑦-plane (left column), and temporal variation of 
normalized vorticity rate ⟨𝜔̇𝑠,𝑧⟩

∗ ( ) and lateral acceleration 𝐚∗𝑥 ( ) (right column).
Fig. 12. Analysis of the case EH3 in the presence of background shear: (a) Bubble rise path in 𝑥𝑦-plane, (b) comparison of ⟨𝜔̇𝑠,𝑧⟩
∗ ( ) and lateral acceleration 𝐚∗𝑥 ( ), and 

(c) instantaneous 3D bubble shape with background velocity vectors schematically visualized by straight arrows.
migration towards region with higher background velocity, but the path 
shows almost no zig-zag movement, implying the fact that in this case 
also the bubble has almost no wobbling behavior. Previously in the 
case of freely rising, this bubble revealed no shape oscillation which 
resulted in ⟨𝜔̇𝑠,𝑧⟩ ≈ 0. But, a close examination of vorticity rate given 
in Fig.  12(b) indicates that in the presence of a background shear, the 
net value of ⟨𝜔̇𝑠,𝑧⟩ is not zero anymore and shows a constant positive 
rate over time. Therefore, it can be inferred that in the presence of a 
background shear and very high viscosity, the bubble does not keep a 
symmetrical shape anymore. This is also evident in the 3D snapshot of 
the bubble presented in Fig.  12(c).

Fig.  12(c) further shows that the bubble has more curvature in its 
side pointed towards the region of the flow with lower background ve-
locity, resulting in higher ∇𝜅. According to Eq.  (5), a higher curvature 
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gradient results in higher 𝝎̇𝑠. This higher rate of vorticity generation on 
one side of the bubble disrupts the equilibrium state that was present 
in the case of EH3 rising in quiescent liquid, and generates a non-
zero lift force that pushes the bubble towards the opposite direction. 
The bubble’s tendency to develop a higher curvature in the areas 
of lower background velocity can be explained by Bernoulli’s law: 
regions with lower flow velocity generally experience higher pressure, 
which increases the surface curvature of the bubble on that side. This 
observation sheds light on the direction change of the large deforming 
bubbles when migrating in the presence of the shear flow. It can be 
hypothesized that the presence of the shear flow could induce asym-
metrical deformation in these bubbles regardless of the flow Morton 
number, and this higher vorticity generation is actually happening 
for the previous EH1 and EH2 cases. The difference in positive and 
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negative vorticity production rate by the bubble deformation is small 
relative to the high overall vorticity production rate in lower Morton 
number cases, therefore it is likely masked by the scale of the plots 
in Fig.  11(b) and (d). But the influence of this asymmetric vorticity 
production rate adds up cumulatively over time, which causes the 
bubble to travel to the right side. Nevertheless, this explanation still 
requires further quantification and proof, which will be the focus of 
future studies. Besides, this behavior had been suspected by previous 
researchers without a quantified proof, probably because of not observ-
ing bubble behavior in less chaotic regimes which happen in higher 
Morton number regimes (van der Linden, 2022).

4. Conclusions

In this research, the lateral and zig-zag motions of single bubble ris-
ing in stagnant liquid or under the influence of a background shear flow 
are analyzed by theory and direct numerical simulations. Accordingly, 
a universal framework for understanding the lift force on the bubble 
is sought by focusing on the relationship between vorticity generation 
due to bubble surface deformation and the lateral acceleration of the 
bubbles.

For this purpose, various bubble flow regimes and liquid properties 
with and without background shear were analyzed, covering a range 
of dimensionless numbers: 0.55 < Eo < 5.96 and 6.65 < Ga < 1383, 
corresponding to −10.5 < 𝐿𝑜𝑔Mo < −3.8, which includes the operat-
ing conditions investigated in the works of Tomiyama et al. (2002), 
Hayashi et al. (2021), and Hessenkemper et al. (2021). Interface-
resolved VOF simulations of these cases were carried out and the 
relevant simulation data were extracted and analyzed. A compliance 
between the vorticity generation due to bubble deformation and the 
lateral acceleration, which is a representation of the lift forces imposed 
on the bubble is observed in all the simulations: first the vorticity is 
generated by the bubble deformation, and then this deposited vorticity 
on the interfacial region turns into a lateral force. When bubbles are 
rising freely in a stagnant liquid, the amplitude of zig-zag movements 
and lateral acceleration corresponds to the amplitude of the vorticity 
generation. Furthermore, this mechanism not only holds for the lift on 
freely-rising bubbles, but also describes the lateral motion of bubbles in 
different size in interaction with the imposed vorticity from the back-
ground shear flow. When vorticity generation due to deformation is low 
for spherical bubbles (small bubbles) the vorticity of the background 
shear flow is the dominating mechanism that dictates bubble lateral 
movements. By increasing vorticity generation due to deformation 
which happens with increasing bubble deformation (larger bubbles), 
this term overrules the shear flow vorticity and dictates the bubble 
lateral migration. Even though similar behavior has been reported in 
the literature, (e.g. Adoua et al. (2009)) it is worth mentioning that pre-
vious work had been using fixed-shaped bubbles in their studies. This 
will essentially eliminate the contribution of the vorticity generation 
rate due to bubble deformation which has been the focus of this paper. 
In addition, most of the previous DNS studies have been using rigid 
symmetric ellipsoids for bubble shapes. The results of this study suggest 
that symmetric ellipsoids exhibit a zero-total vorticity generation rate, 
while asymmetry in the bubble shape appears to contribute to devia-
tions from equilibrium in vorticity generation and causes a non-zero lift 
force emergence. This physical interconnection has not been discussed 
previously in the literature, especially in modeling of the lateral lift 
force, and supports the arguments on the effect of the delay between 
vorticity and lift force in previous modeling attempts (van der Linden, 
2022). Nevertheless, this aspect still requires further quantification in 
future studies.

The present work provides a deeper understanding on the role of 
vorticity generation by the bubble. The theoretical framework proposed 
in this study is unified among all dimensionless numbers that charac-
terize the bubble flow regimes, and the findings pave the path towards 
a more accurate definition of the lift force based on this principal 
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physical attribute of the bubble regardless of the liquid properties. We 
plan to verify these findings also experimentally by analyzing 3D shape 
reconstruction of bubbles in the future work. Furthermore, as a part of 
an ongoing investigation on the up-scaling simulation methodology for 
bubbly flows, the present findings could contribute to development of 
new universal lift model in the context of Eulerian-Lagrangian simula-
tions. Our future work will focus on the development, implementation 
and validation of such a closure model for the lift force, and its overall 
performance in the prediction of hydrodynamics and heterogeneity of 
the bubbly plumes will be validated against experimental measurement 
obtained by the tomographic PIV method.
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