OPTIMO ATCZ291

Optimization of sustainable sulfuric acid production for (bio)leaching processes in the waste sector

metallurgical competence center

Scientific Partners

Financially supported by

Osterreich-Tschechische Republik

Expert Meeting, Tulln, 14 December 2022

OPTIMO ATCZ291

Optimization of sustainable sulfuric acid production for (bio)leaching processes in the waste sector

metallurgical competence center

Sulfuric acid

- Sulfuric acid is the world's largest bulk chemical, but production high energy requirements
- On the other hand, elemental sulfur occurs in large amounts as a by-product

Aim

- Demonstrate the high potential of extremely acidophilic, sulfur-oxidizing bacteria
- An efficient biogenic sulfuric acid production
- Bioelectrochemical metal recovery

opäischer Fonds für regionale Entwicklung

Circular economy

 Use of the produced sulfuric acid for (bio)leaching of secondary raw materials

Partner OPTIMO - Interreg ATCZ291

K1-MET, Linz: Lead partner and experiments with thermophilic bacteria and bioelectrochemical zinc recovery

BOKU, Institute of Environmental Biotechnology, Tulln: experiments with mesophilic bacteria and heap bioleaching

MU, Masaryk University, Brno: Metal analytics, characterization of the microbial communities, kinetic analysis

Project budget:	191 949.09 € (85% funding rate)
Project duration:	01.01.2022 – 31.12.2022 (one year)
Funded by:	European Regional Development Fund

Selection of suitable bacteria Bioleaching

BOKU: mesophilic bacteria: Acidithiobacillus thiooxidans, A. caldus and

environmental sample (lake in Czech Republic)

• K1-MET: thermophilic bacteria: Sulfobacillus acidophilus, S. thermosulfidooxidans

Incubation with elemental sulfur

Screening according:

- Produced acidity
- Sulfur conversion
- Optical density

Incubation with elemental sulfur

Selection of potential waste streams Biogenic Sulfuric Acid as a leaching agent

metallurgical competence center

Transparent pharmaceutical blisters

White pharmaceutical blisters

Printed circuit boards (PCBs)

Selection of suitable parameters Bioleaching at BOKU

metallurgical competence center

- 1.5 10% (w/v) elemental sulfur
- 250 rpm
- 30°C
- 100 L/h aeration
- Minimal Medium (DSM35)
- Influence of CO₂ and O₂

Laboratory Setup at BOKU (©IFA Tulln)

More about biogenic sulfur production at BOKU today...
 Biogenic sulfuric acid production and application for metal bioleaching from different waste streams
 Dr. Klemens Kremser

Bioelectrochemical Experiments Zinc recovery at K1-MET

- □ Set up of a microbial electrolysis cell (bioanode and cathode)
- Testing Zn recovery from synthetic solution
 - □ >90% Zn recovery
 - □ Impact of cathode material (titanium, graphite)
 - □ Impact of flushing the cathode solution at Zn recovery

 \Box Sampling of electroactive biofilm \rightarrow Analysis of microbial community (MU)

Microbial electrolysis cell

Metal recovery from bioleachate - Method

metallurgical competence center

Setup	
Cathode	220 mL diluted bioleachate Graphite Aerobic (without catholyte flushing)
Anode	220 mL Cheng medium (pH 7) Pretreated carbon felt electrode Anaerobic
Membrane	Proton exchange membrane (PEM)
Microbes	Mixed culture (inoculum sewage sludge)
Substrate	2x per week, synthetic wastewater (glucose, acetate, peptone, yeast extract)
Temperature	Room temperature (RT)
Monitoring	pH, current flow, anode/cathode potential, COD removal rate, Zn recovery rate
Applied potential	Anode: -100mV vs. Ag/AgCI (3M NaCI)

Characterization of microbial communities

(Meta)genomic analysis at Masaryk University

- Methods and Instruments
 - MiniSeq System (Illumina) next-generation sequencing technology
 >> monitoring all prokaryotes
 - Quantitative PCR (QPCR)

>> monitoring of the selected species or metabolism markers

https://www.illumina.com/

EUROPÄISCHE UNION

metallurgical competence center

- Study of the limitation of sulfur and iron oxidation by gases such as O₂ and CO₂
- Model bioleaching microorganism Acidithiobacillus ferrooxidans
- Impact on mixing and aeration requirements in operational processes

• More today

The production of biogenic sulfuric acid is limited by the sulfur substrate and potentially by carbon dioxide *Dr. Martin Mandl*

(©MU)

